TEXNOАОГIKO ЕКПАІДЕҮTIKO IДPYMA MEЕОАОГГIOY

TMHMA THAEIIKOINQNIAK

ПTYXIAKH EPГAГIA

" DIOIKHTIKOI \& ПАНРОФOPIAKOI MHXANIEMOI

$\Sigma П О Ү \triangle А \Sigma Т Н \Sigma: ~ П А П А N \triangle P E O Y ~ Г Е \Omega Р Г I O \Sigma ~$

Еүкрі́Өŋкє $\alpha \pi$ о́ $\tau \eta \nu \tau \rho \iota \varepsilon \lambda \eta ́ \varepsilon \xi \varepsilon \tau \alpha \sigma \tau \iota \kappa \eta ́ \varepsilon \pi \iota \tau \rho о \pi \eta ́$

ЕПІТРОПН АЕІОЛОГНГНГ

Абпиако́тоидоя Гєб́рүгоя
ムои́ßpos $\Sigma \pi v \rho i ́ \delta \omega v$
Aбарíঠŋऽ H $\lambda i ́ \alpha \varsigma$

Пєрí $\eta \psi \eta$

 $\tau \eta \varsigma ~ \zeta \eta \mu ı \alpha ́ \varsigma ~ \pi о v ~ \pi \rho о к \lambda \eta ́ \theta \eta \kappa \varepsilon ~ \alpha \pi o ́ ~ \mu ı \alpha ~ \varepsilon \pi i \theta \varepsilon \sigma \eta . ~ O ı ~ \delta ぃ \kappa \kappa \tau \kappa \kappa \varepsilon ́ \varsigma ~ \varepsilon \pi i ́ \sigma \eta \varsigma ~ \alpha \rho \chi \varepsilon ́ \varsigma ~ \kappa \alpha \lambda о v ́ v \tau \alpha ı, ~ v \alpha$ $\alpha \nu \tau \mu \varepsilon \tau \omega \pi i ́ \sigma o v \nu \tau$ т ε $\gamma \kappa \lambda \eta \mu \alpha$.

 $\tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \pi \alpha \rho \alpha \tau i ́ \theta \varepsilon \nu \tau \alpha \iota ~ \tau \alpha ~ \tau \varepsilon \lambda ı \alpha \alpha ́ \mu \alpha \varsigma ~ \sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha ~ \kappa \alpha ı ~ \pi \rho о \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \gamma 1 \alpha ~ \tau \eta \nu \alpha \nu \tau \iota \mu \varepsilon \tau ஸ ́ \pi ı \sigma \eta$ тоv $\pi \rho о \beta \lambda \eta ́ \mu \alpha \tau о \varsigma$.

Пívaкая Пєрıєұоцธ́vตv

Пєрí $\lambda \eta \psi \eta$ iii
Пívакац Пعрєєұонє́vตv iv
Eıб $\alpha \boldsymbol{\omega} \gamma \dot{\prime}$ 1
 2
1．1．Ібторюки́ $\alpha v \alpha \delta \rho о \mu \eta ́$ 2
 4
1．3．Opıбнó̧ Н $\lambda \varepsilon \kappa \tau \rho о v ı \kappa о и ́ ~ Е \gamma \kappa \lambda \eta ́ \mu \alpha \tau о \varsigma ~$ 5
 7
1．5．Avapopéc lov кє甲 $\alpha \lambda \alpha i ́ o v$ 8
 9
 9
2．2．Паıбıќ лорvоүрацí 9
 13
 16
2．5．Како́ßоvдо доүıбцıко́ 18
2．5．1．Ió́ 18
2．5．2．इкочди́кка 19
 20
 20
 20
 21
2．5．7．Пє七раєєí́ оvона́ $\tau \omega \vee ~ \chi \omega ́ \rho о v ~$ 22
 22
2．7．Еүк $\lambda \eta \mu \alpha \tau \alpha$ бто Δ ı $\alpha \delta i ́ \kappa \tau v o ~$ 23
2．7．1．A $\pi \alpha ́ \tau \eta \mu \varepsilon$ e－mail 23
2．7．2．А $\pi \alpha ́ \tau \eta \mu \varepsilon \pi \iota \tau \tau \tau \tau \kappa \varepsilon ́ \varsigma ~ \kappa \alpha ́ \rho \tau \varepsilon \varsigma ~$ 23
2．7．3．К $\lambda о \pi \grave{~} \tau \alpha v \tau$ о́тๆ $\tau \alpha \varsigma$ 24
2．7．4．ヨغ́ $\pi \lambda \nu \mu \alpha \chi \rho \dot{\mu} \mu \alpha \tau о \varsigma$ 25
2．8．Avaчор ́́ऽ $20 v \kappa \varepsilon \varphi \alpha \lambda \alpha i ́ o v$ 26

3.1. Н $\alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha ~ \sigma \tau о ~ \Delta ı \alpha ́ ́ к \tau v o ~$ 27
 27
3.3. Køסıкоí $\pi \rho о ́ \sigma \beta \alpha \sigma \eta \varsigma$ 28
3.4. Хрฑ́бๆ $\lambda о \gamma เ \sigma \mu \kappa о$ о́ $\alpha \sigma \varphi \alpha \lambda \varepsilon i ́ a s$ 29
 29
3.6. Firewalls 30
3.7. Крилтоүрачí \& $\alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha$ 31
3.7.1. इข $\mu \mu \varepsilon \tau \rho ı к ́ к ~ к р о л т о \gamma \rho \alpha . \varphi i ́ \alpha ~$ 32
3.7.2. Абט́ $\mu \mu \tau \tau \eta ~ к \rho v \pi \tau о \gamma \rho \alpha \varphi i ́ \alpha ~$ 32
3.7.3. $\Delta ı \alpha \chi \varepsilon i ́ p ı \sigma \eta ~ \delta \eta \mu о \sigma i ́ \omega v ~ \kappa \lambda \varepsilon ı \delta \iota \omega$ 33
3.8. Avapo 33
 34
4.1. Еıб $\alpha \gamma \omega \gamma \eta ́$ 34
 34
4.3. Еvтолıбно́s $\eta \lambda \varepsilon \kappa \tau \rho о v ı к о и ́ ~ \varepsilon \gamma к \lambda \eta \mu \alpha \tau i ́ \alpha ~$ 35
 35
 36
4.3.3. Еvтотıб μ о́ оvó $\mu \alpha \tau o \varsigma$ \& $\delta ı \varepsilon v ́ \theta v v \sigma \eta$ IP 37
4.3.4. Мŋvט́ $\mu \alpha \tau \alpha ~ \eta \lambda \varepsilon \kappa \tau \rho о v i \kappa о и ́ ~ \tau \alpha \chi v \delta \rho о \mu \varepsilon i ́ o v ~$ 38
4.4. Aбтьvoцía \& $\eta \lambda \varepsilon \kappa \tau \rho о v ⿺ \kappa o ́ ~ \varepsilon ́ \gamma к \lambda \eta \mu \alpha$ 38
 43
 46
4.7. Avapo 46
KЕФAAAIO 5. Epqvvŋтıкó Mépos 51
ЕПІЛОГОГ 52
 57
ВІВАІОГРАФІА 63

Еıбоүตүŋ́

 $\eta \lambda \varepsilon \kappa \tau \rho о$ гккои́ $\varepsilon \gamma \kappa \lambda \eta ́ \mu \alpha \tau о \varsigma$.
 סıє $\xi 0 \delta 1 \kappa \alpha ́$.

 $\pi \alpha \rho \alpha \theta \varepsilon ́ \tau \varepsilon ı ~ \tau о \nu ~ \varepsilon v \tau о \pi \iota \sigma \mu o ́ ~ \tau о v ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \alpha \sigma \tau v v о \mu i ́ \alpha . ~$
 тоv бטбти́ $\mu \alpha \tau о \varsigma ~ \pi о v ~ \delta \eta \mu ю о р \gamma \eta ́ \sigma \alpha \mu \varepsilon$.
 $\alpha \nu \tau \mu \varepsilon \tau \dot{\sigma} \pi \iota \sigma \eta$ тоv $\pi \rho о \beta \lambda \dot{\eta} \mu \alpha \tau \circ \varsigma$.

КЕФАААIO 1. To $\rceil \lambda \varepsilon \kappa \tau \rho о \nu \iota \kappa o ́ ~ \varepsilon ́ \gamma \kappa \lambda \eta \mu \alpha$

1.1. Ібторıки́ $\alpha v \alpha \delta \rho о \mu \eta ́$

[^0]

 vтодоүıбтıкต́v $\sigma \cup \sigma \tau \eta \mu \alpha ́ \tau \omega v$.

Н $\mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \varepsilon \pi \alpha v \alpha ́ \sigma \tau \alpha \sigma \eta ~ \sigma \tau о \nu ~ \tau о \mu \varepsilon ́ \alpha ~ \tau о v ~ \eta \lambda \varepsilon к \tau \rho о v i к о и ́ ~ \varepsilon \gamma к \lambda \eta ́ \mu \alpha \tau о \varsigma, ~ \varepsilon \pi ŋ ́ \lambda \theta \varepsilon ~ \mu \varepsilon \tau \alpha ́ ~ \tau \eta \nu ~ \varepsilon \mu \varphi \alpha ́ v ı \sigma \eta ~$

 $\pi \rho о \tau \iota \eta \dot{\sigma \varepsilon \iota \mu \alpha \varsigma \text { к. } \alpha . . ~}$

 $\kappa \alpha ı \tau \eta \nu \varepsilon \xi^{\prime} \alpha \pi о \sigma \tau \alpha ́ \sigma \varepsilon \omega \varsigma ~ \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta$, $\tau \eta \nu \tau \eta \lambda \varepsilon \delta 1 \alpha ́ \sigma \kappa \varepsilon \psi \eta$, $\tau \eta \nu \pi \rho \alpha \gamma \mu \alpha \tau о \pi о$ о́ך $\sigma \eta ~ \sigma v \nu \alpha \lambda \lambda \alpha \gamma \omega ́ v$ $\mu \varepsilon \delta \eta \mu o ́ \sigma \iota \varepsilon \varsigma$ v vппрєбí ς, к..

[^1]

 $\varepsilon \pi \iota \kappa \rho \alpha \tau \eta ์ \sigma \varepsilon 1 ~ \sigma \eta ́ \mu \varepsilon \rho \alpha, \mu \pi о \rho о v ́ \mu \varepsilon$ v $\alpha \varepsilon \omega \rho \eta ́ \sigma о \cup \mu \varepsilon$ то $\eta \lambda \varepsilon \kappa \tau \rho о v ı к о ́ ~ \varepsilon ́ \gamma \kappa \lambda \eta \mu \alpha \omega \varsigma:$

 $\pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v \varepsilon \tau \alpha l$ бтоvऽ δ v́o $\tau \varepsilon \lambda \varepsilon v \tau \alpha i ́ o v \varsigma ~ o ́ \rho o v \varsigma . ~$

[^2]
 $\sigma \varepsilon \pi \alpha \rho \alpha ́ v o \mu \varepsilon \varsigma \delta \rho \alpha \sigma \tau \eta \rho ⿺ 夂 ⺀ \tau \eta \tau \varepsilon \varsigma$.

 тєұvoдoүía ópous．

 $\pi \alpha \rho \alpha ́ \delta \varepsilon \imath \gamma \mu \alpha$ ，$\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \eta \lambda \varepsilon \kappa \tau \rho о v ı \kappa o ́ ~ \varepsilon ́ \gamma к \lambda \eta \mu \alpha$ о $\beta \iota \alpha \sigma \mu$ о́ $\mu i ́ \alpha \varsigma ~ \gamma \cup v \alpha i ́ \kappa \alpha \varsigma ~ \alpha \pi o ́ ~ \varepsilon ́ v \alpha v ~ \alpha ́ v \delta \rho \alpha, ~ \tau о v ~$

 （chat $\kappa \alpha{ }^{\text {e }}$ e－mail）．

 $\sigma \nu \mu \beta \alpha \tau \iota \kappa o ́ ~ \varepsilon ́ \gamma к \lambda \eta \mu \alpha^{4}$ ．

Eívaı $\gamma \varepsilon \gamma \circ$ о̧́ ó óı то $\eta \lambda \varepsilon \kappa \tau \rho о v ı \kappa o ́ ~ \varepsilon ́ \gamma к \lambda \eta \mu \alpha ~ \delta ı \alpha \pi \rho \alpha ́ \tau \tau \varepsilon \tau \alpha ı ~ \alpha ́ \mu \varepsilon \sigma \alpha, ~ \sigma \varepsilon ~ \varepsilon \lambda \alpha ́ \chi ı \sigma \tau \alpha ~ \delta \varepsilon v \tau \varepsilon \rho o ́ \lambda \varepsilon \pi \tau \alpha . ~ O ~$

 vлодоүıбти́．

[^3]

 $\sigma \varepsilon \pi \rho \alpha \gamma \mu \alpha \tau \iota \kappa$ о́ $\chi \rho o ́ v o, \chi \omega \rho i ́ \varsigma ~ \mu \varepsilon \tau \alpha \kappa i ́ v \eta \sigma \eta$, вv́код α каı $\alpha \nu \varepsilon ́ \xi$ о $\delta \alpha$.

H $\varepsilon \pi \alpha v \alpha ́ \sigma \tau \alpha \sigma \eta$ аvтŋ́ $\sigma \tau \iota \varsigma ~ \varepsilon \pi ı \kappa о \imath \omega v i ́ \varepsilon \varsigma ~ \sigma v v \varepsilon ́ \beta \alpha \lambda \varepsilon ~ \sigma \tau \eta ~ \delta 1 \alpha ́ \delta o \sigma \eta ~ \varepsilon \gamma к \lambda \eta \mu \alpha ́ \tau \omega v$, ó $\pi \omega \varsigma ~ \eta$

 $\delta \nu \sigma \chi \varepsilon \rho \alpha i ́ v \varepsilon ı$ ŋ́ $\varepsilon \mu \pi \circ \delta i ́ \zeta \varepsilon \iota \tau \eta \nu \alpha v i ́ \chi v \varepsilon \cup \sigma \eta ́ ~ \tau о v$.

 ঠıкпүо́рот.

[^4]

 ($\theta \varepsilon \omega$ рía τ о⿱ $\pi \alpha \gamma o ́ \beta o v v o v)$.

 $\eta \lambda \varepsilon \kappa \tau \rho о$ гккои́ $\varepsilon \gamma \kappa \lambda \eta \dot{\mu} \mu \tau \circ \varsigma{ }^{6}$:

 $\delta \eta \mu о \sigma i ́ \varepsilon \cup \sigma \eta$ бто $\Delta 1 \alpha \delta i ́ \kappa \tau v o ~ \mu i ́ \alpha \varsigma ~ \sigma \varepsilon \lambda i ́ \delta \alpha \varsigma ~ \mu \varepsilon ~ \pi \rho о \sigma \beta \lambda \eta \tau ı к o ́ ~ \pi \varepsilon \rho ı \varepsilon \chi o ́ \mu \varepsilon v o ~ \gamma l \alpha ~ \varepsilon ́ v \alpha ~ \pi \rho о ́ \sigma \omega \pi о . ~$ Ovбıабтוка́ $\sigma \tau \eta \nu \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta$ $\alpha v \tau \eta$ то $\Delta 1 \alpha \delta i ́ \kappa \tau v o ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \varepsilon ́ v \alpha ~ \alpha \kappa o ́ \mu \eta ~ \mu \varepsilon ́ \sigma o ~ \gamma 1 \alpha ~ \tau \eta \nu ~ \tau \varepsilon ́ \lambda \varepsilon \sigma \eta ~$ $\varepsilon v o ́ \varsigma ~ \varepsilon \gamma к \lambda \eta ́ \mu \alpha \tau о \varsigma$.

 како́ßочдоv доүıбцıкои́ (七́v)).

Ало́ $\tau \alpha \pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \delta ı \alpha \varphi \alpha i v \varepsilon \tau \alpha l ~ o ́ \tau ı ~ \tau о ~ \eta \lambda \varepsilon \kappa \tau \rho о v ı к o ́ ~ \varepsilon ́ \gamma к \lambda \eta \mu \alpha ~ \sigma v \mu \mu \varepsilon \tau \varepsilon ́ \chi \varepsilon ı ~ \pi о ו к 1 \lambda о ́ \tau \rho о \pi \alpha ~ \sigma \tau о ~$

[^5]
1.5. Avapopés $10 v$ кє甲адаíov

1. Forester T., Morrison P., (1994). «Computer Ethics: Cautionary Tales and Ethical Dilemmas in Computing», Massachousetts Institute of Technology
2. Frey D. (2003). «An Analysis of Cybercrime: Past, present and future», Buffalo University's Publications.
3. Goodman M., Brenner S., (2002). «The Emerging Consensus on Criminal Conduct in Cyberspace». UCLA Journal and Technology.
4. United Nations (1995), «International Review on Criminal Policy-United Nations Manual on the prevention and control of Computer Related crime», United Nations Edition

 ठıктv́ळv», Екסóбєıg Avíкоvда.

2.1. $\Delta \iota \propto \kappa i ́ v \eta \sigma \eta ~ \pi о \rho v o \gamma \rho \alpha \varphi ı к о v ์ ~ v \lambda ı к о v ́ ~$

 $\pi \rho \circ \mu \eta \theta \varepsilon u ́ \varepsilon \sigma \alpha \iota, \pi \rho \circ \sigma \phi \varepsilon ́ \rho \varepsilon \iota \varsigma ~ v \varepsilon ́ o ~ u \lambda เ \kappa o ́, ~ \omega \varsigma ~ \alpha v t \alpha ́ \lambda \lambda \alpha ү \mu \alpha$.

2.2. Паıбькท́ лорvоүрафía

弓 ω tavó «oóou».

[^6]

 $\pi \lambda \eta \rho \dot{v o v v} \alpha \delta \rho \alpha ́$.

 $\kappa \alpha ı ~ \tau ı \varsigma ~ \pi ı 0 ~ \alpha \pi \alpha ı \tau \eta \tau \iota \kappa \varepsilon ́ \varsigma ~ \delta 1 \alpha \sigma \tau \rho о \varphi \iota \kappa \varepsilon ́ \varsigma ~ \varepsilon \pi \imath \theta v \mu i ́ \varepsilon \varsigma ~ \tau \omega v ~ \pi \varepsilon \lambda \alpha \tau \omega ́ v ~ \tau о \cup \varsigma$.

甲т $\alpha \sigma o v v ~ \mu o ́ v o ~ o ́ \sigma o ı ~ \gamma v \omega \rho i ́ ̧ o v v ~ к \alpha \lambda \alpha ́ ~ \tau \alpha ~ \alpha \pi o ́ ~ \kappa \omega \delta ı к о v ́ s ~ \kappa \alpha ı ~ \sigma v v \theta \eta \mu \alpha \tau ı к \alpha ́ . ~$
 $\eta \lambda \varepsilon \kappa \tau \rho о v ⿺ 𠃊 \sim v ́ ~ \tau \alpha \chi \cup \delta \rho о \mu \varepsilon$ íov（e－mail），$\varepsilon v \omega ́ ~ o l ~ \pi \alpha \rho \alpha ́ v o \mu \varepsilon \varsigma ~ v \pi \eta \rho \varepsilon \sigma i ́ \varepsilon \varsigma ~ \pi о v ~ \pi \rho о \sigma \varphi \varepsilon ́ \rho о \nu \tau \alpha 1, ~$

[^7]
 $\pi \rho о \sigma \varphi \varepsilon ́ \rho о \vee \tau \alpha \iota ~ \delta \omega \rho \varepsilon \alpha ́ v, ~ \varepsilon i ́ v \alpha ı ~ \mu o ́ v o ~ o ~ " к \rho \alpha ́ \chi \tau \eta \varsigma " ~ \pi о v ~ \delta \varepsilon \lambda \varepsilon \alpha ́ \zeta \varepsilon ı ~ \tau o u \varsigma ~ \varepsilon \pi i ́ \delta o \xi o v \varsigma ~ \pi \varepsilon \lambda \alpha ́ \tau \varepsilon \varsigma . ~$

 $\alpha \dot{\alpha} \lambda \mathrm{ol} \varphi \rho \alpha \gamma \mu \mathrm{oi}{ }^{9}$.

 $\delta \iota \sigma \sigma$ оою ．

 $\delta є \varepsilon ์ \theta 0 v \sigma \eta \varsigma ~ \eta \lambda \varepsilon \kappa \tau \rho о v ⿺ 𠃊 ⿴ 囗 ์ ~ \tau \alpha \chi \cup \delta \rho о \mu \varepsilon$ ќov．

[^8]

 $\sigma \cup \mu \pi \varepsilon \rho \iota \varphi о \rho \alpha ́ \varsigma ~{ }^{10}$:

 үoveí̧ τ оv̧ $\mathfrak{\eta} \tau \alpha v \alpha v \varepsilon \pi \imath \theta$ ט́ $\eta \tau \alpha \lambda \alpha \dot{\theta} \theta \eta$.

 к $\alpha \iota \mu \varepsilon ́ v o v v ~ о р \varphi \alpha v \alpha ́ ~ к \alpha ı ~ \alpha \pi \rho о \sigma \tau \alpha ́ \tau \varepsilon v \tau \alpha . ~ \Sigma \tau о ~ \pi \lambda \alpha i ́ \sigma ı o ~ \alpha v \tau o ́ ~ \tau \alpha ~ \alpha v \eta ́ \lambda ı к \alpha ~ \pi \alpha ı \delta ı \alpha ́ ~ к \alpha \theta i ́ \sigma \tau \alpha v \tau \alpha ı ~$

 $\pi о \lambda \cup \tau \varepsilon \lambda \varepsilon i ́ \alpha \varsigma$.

[^9]
 vүๆ入ótєрєऽ $\alpha \pi о \delta \alpha \chi \varepsilon ́ \varsigma ~ \alpha \pi o ́ ~ \kappa \alpha ́ \theta \varepsilon ~ \alpha ́ \lambda \lambda \eta ~ « \delta \rho \alpha \sigma \tau \eta \rho ı o ́ \tau \eta \tau \alpha »$.

2.3. $\Delta \mathrm{t} \alpha \delta \iota к \tau v \alpha к \eta ́ ~ \eta \lambda \varepsilon к \tau \rho о \nu ı к \eta ́ ~ \tau \rho о \mu о к \rho \alpha \tau i ́ \alpha ~$

 $\pi i ́ \varepsilon \sigma \eta \varsigma ~ \sigma \varepsilon \mu 1 \alpha \kappa \nu ß \varepsilon ́ \rho \vee \eta \sigma \eta$.

 $\mu \varepsilon ́ \sigma \omega$ tov $\delta 1 \alpha \delta ı \kappa \tau v ́ o v ~{ }^{11}$.

К $\alpha \tau \alpha ́ \mu i ́ \alpha ~ \tau \varepsilon ́ \tau \alpha \rho \tau \eta ~ \varepsilon к \delta о \chi \emptyset ́, ~ \omega \varsigma ~ \eta \lambda \varepsilon к \tau \rho о \nu ו \kappa ŋ ́ ~ \tau \rho о \mu о к р \alpha \tau i ́ \alpha ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ о \rho ı \sigma \theta \varepsilon i ́ ~ \eta ~ \pi \rho о \mu \varepsilon \lambda \varepsilon \tau \eta \mu \varepsilon ́ v \eta ~$

[^10]

 $\kappa \alpha ı \eta \pi \lambda \varepsilon ́ o v$ є $\pi \kappa$ кiv $\delta v v \eta ~ \mu \varepsilon ́ \chi \rho ı ~ v \alpha ~ \gamma i ́ v \varepsilon ı ~ \alpha v \tau \imath \lambda \eta \pi \tau \eta \eta^{12}$.

 $\pi \lambda \eta \mu \mu v ́ \rho \omega v$ к. $\lambda . \pi$.

 $\sigma \tau \eta \nu \pi \tau \omega ́ \sigma \eta$ นov.

 $\sigma \varepsilon ~ \gamma \rho \alpha \varphi \varepsilon i ́ \alpha ~ П \rho \omega \tau о \delta ı к \varepsilon i ́ \omega v ~ к . \lambda . \pi$.

Oı $\varepsilon \pi \imath \theta \varepsilon ́ \sigma \varepsilon ı \zeta ~ \sigma \tau \eta ~ \delta \varepsilon v ́ \tau \varepsilon \rho \eta ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~(\tau \alpha к \tau \iota к ŋ ́ ~ \varepsilon \pi i ́ \theta \varepsilon \sigma \eta ~ \pi \rho ต ́ \tau о v ~ \varepsilon \pi \imath \pi \varepsilon ́ \delta o v) ~ \varphi \alpha i ́ v \varepsilon \tau \alpha ı ~ v \alpha ~$

 $\varepsilon \pi \imath \tau 1 \theta \varepsilon ́ \mu \varepsilon v o \varsigma ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \varepsilon i ́ v \alpha l ~ \delta v \sigma \alpha \rho \varepsilon \sigma \tau \eta \mu \varepsilon ́ v o \varsigma ~ v \pi \alpha ́ \lambda \lambda \lambda \eta \lambda o \varsigma ~ \tau о v ~ \chi \omega ́ \rho o v, ~ v \pi \alpha ́ \lambda \lambda \eta \lambda o \varsigma$

[^11]

 $\sigma \tau о \chi \varepsilon v ์ \varepsilon \imath ~ \sigma \tau \eta \nu ~ \pi \rho o ́ к \lambda \eta \sigma \eta ~ \sigma о ß \alpha \rho \eta ́ s ~ \alpha v ต \mu \alpha \lambda i ́ \alpha s ~ к \alpha ı ~ \varepsilon v \tau \varepsilon ́ \lambda \varepsilon ı ~ \sigma \tau \eta \nu ~ к \alpha \tau \alpha \sigma \tau \rho о \varphi \eta ́ ~ \tau о v ~$

 $\sigma о \beta \alpha \rho \varepsilon ́ \varsigma ~ \varepsilon \pi \imath \theta \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \sigma \tau о ~ \delta ı \alpha \delta i ́ к \tau v o ~ \eta ́ ~ к \alpha ı ~ \eta ~ \pi \rho о \beta о \lambda \eta ́ ~ \theta \varepsilon \mu \alpha ́ \tau \tau \nu \nu ~ \tau \rho о \mu о к р \alpha \tau i ́ \alpha \varsigma ~ \mu \varepsilon ~ \varepsilon ́ \mu \mu \varepsilon \sigma \eta ~ \chi \rho \eta ́ \sigma \eta ~$

 бколоv́s, $\alpha \varphi о$ каı $\gamma 1 \alpha$ аvтóv $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \varepsilon ́ v \alpha ~ \alpha \rho \kappa \varepsilon \tau \alpha ́ \alpha ~ \alpha \sigma \varphi \alpha \lambda \varepsilon ́ \varsigma ~ \varepsilon \rho \gamma \alpha \lambda \varepsilon i ́ o . ~ ' E \chi \varepsilon ı ~ \delta ı \alpha \pi ı \sigma \tau \omega \theta \varepsilon i ́ ~ \alpha \pi o ́ ~$

 $\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha ́ \tau \omega v \pi 0 v \alpha v \tau \varepsilon ́ \varsigma ~ \theta \alpha ~ \varepsilon \pi \iota \varphi \varepsilon ́ \rho o v v$.

 π тоv $\pi \varepsilon \rho \iota \varphi \varepsilon ́ \rho о \nu \tau \alpha ı ~ \pi \alpha \nu \tau о v ์ ~ \eta ́ ~ \delta ı \alpha \mu \alpha \rho \tau ט ́ \rho o v \tau \alpha ı ~ \gamma 1 \alpha ~ \kappa \alpha ́ \theta \varepsilon ~ \varepsilon i ́ \delta o v \varsigma ~ \zeta \eta \tau \eta ́ \mu \alpha \tau \alpha ~ \kappa \alpha ı ~ \alpha \pi o ́ ~ \alpha ́ \tau о \mu \alpha ~ \pi о v ~$

[^12]

 ко́лою๐ π оv $\theta غ ́ \lambda \varepsilon ı ~ v \alpha ~ \delta ı \alpha \pi \rho \alpha ́ \xi ̌ \varepsilon ı ~ \tau \eta \nu ~ \varepsilon \pi i ́ \theta \varepsilon \sigma ๆ . ~$

 тоv $\sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma . ~ \Sigma \tau \eta ~ \delta \varepsilon v ́ \tau \varepsilon \rho \eta ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ о ~ к i ́ v \delta v v o s ~ \varepsilon i ́ v \alpha l ~ \mu \mu \kappa o ́ \tau \varepsilon \rho o s ~ \alpha \lambda \lambda \alpha ́ ~ \varepsilon \xi ̆ i ́ \sigma o v ~$ бף $\mu \alpha \nu \tau$ тко́s.

 $\chi \rho \eta ́ \sigma \tau \eta \varsigma . ~ T \alpha ~ \alpha \rho \chi \varepsilon i ́ \alpha ~ \alpha v \tau \alpha ́, ~ \pi \varepsilon \rho ı \varepsilon ́ \chi о v v ~ \delta ı \alpha ́ \varphi о \rho \varepsilon \varsigma ~ \pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma, ~ o ́ \pi \omega \varsigma ~ \tau \alpha ~ \sigma \tau о \chi \chi \varepsilon ́ \alpha ~ \tau о v ~ \chi \rho \eta ́ \sigma \tau \eta, ~ o 七 ~$

[^13]

 бколо́ vа $\lambda \eta \varphi \theta$ ои́v $\pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma ~ \gamma 1 \alpha ~ \tau ı \varsigma ~ v \pi \eta \rho \varepsilon \sigma i ́ \varepsilon \varsigma ~ \pi о v ~ \pi \rho о \sigma \varphi \varepsilon ́ \rho о v \nu, ~ к \alpha \theta \omega ́ \varsigma ~ к \alpha ı ~ \gamma ı \alpha ~ \tau о ~$

 $\lambda о \gamma \alpha \rho ı \sigma \mu \omega ́ v ~ \chi \rho \eta \sigma \tau \omega ́ v ~ \pi о v ~ \delta \varepsilon v ~ \pi \rho о \sigma \tau \alpha \tau \varepsilon v ́ o v \tau \alpha ı ~ \mu \varepsilon ~ к \omega \delta ı к о ́ ~ \pi \rho o ́ \sigma \beta \alpha \sigma \eta \varsigma, ~ \gamma ı \alpha ~ v \alpha ~ \varepsilon \pi ı \tau \varepsilon v \chi \theta \varepsilon i ́ ~$ $\varepsilon v ́ \kappa о \lambda \eta \pi \rho o ́ \sigma \beta \alpha \sigma \eta$ бто σ v́ $\tau \eta \mu \alpha^{15}$.

[^14]
2.5. Како́ßоvдо доүıбиıко́

 $\alpha \lambda \lambda$ ою́́бєı $\delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ \eta ́ ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha, ~ v \alpha ~ v \pi о к \lambda \varepsilon ́ \psi \varepsilon ı ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ \kappa \alpha ı ~ v \alpha ~ \pi \alpha \rho \varepsilon \mu \pi о \delta i ́ \sigma \varepsilon ı ~ \tau \eta ~$

 (Trojan Horses).

2.5.1. Ioí

 $\delta ı \alpha \varphi о \rho \varepsilon \tau \iota к о ́ ~ \tau \rho о ́ \pi о . ~ М \pi о \rho \varepsilon і ́, ~ \gamma ı \alpha ~ \pi \alpha \rho \alpha ́ \delta \varepsilon \imath \gamma \mu \alpha, ~ v \alpha ~ \varepsilon \mu \varphi \alpha v i \zeta \varepsilon є ~ \varepsilon ́ v \alpha ~ \mu \eta ́ v v \mu \alpha ~ \sigma \tau \eta \nu ~ o \theta o ́ v \eta, ~ v \alpha$

 бє દ́v α vло入оүเбтŋ́.
 $\zeta ŋ \mu u \alpha ́ c(p a y l o a d)$.

 $\chi \rho \eta ́ \sigma \tau \eta \varsigma v \alpha \mu \eta \nu \mu \pi о \rho \varepsilon i ́ v \alpha \alpha v \tau i \lambda \eta \varphi \theta \varepsilon i ́ \tau \eta \nu \varepsilon \kappa \tau \varepsilon ́ \lambda \varepsilon \sigma \eta \tau \circ v$.
 $\sigma \varepsilon \alpha \dot{\alpha} \lambda \lambda \mathrm{o}$ vлодоүıбтıкó $\sigma ์ \sigma \tau \eta \mu \alpha$.

[^15]

File-infectors $\mathfrak{\eta}$ parasitic viruses: Oı wó $\tau \eta \varsigma ~ \mu о \rho \varphi \eta ́ \varsigma ~ \alpha v \tau \eta ́ \varsigma, ~ \varepsilon v \varepsilon \rho \gamma о v ́ v ~ \mu о \lambda o ́ v o v \tau \alpha \varsigma ~ \varepsilon ́ v \alpha ~$

 resident, oı олоíoı $\pi \alpha \rho \alpha \mu \varepsilon ́ v o v v ~ \sigma \tau \eta ~ \mu \nu \eta ́ \mu \eta ~ \tau о v ~ v \pi о \lambda о \gamma ı \tau \tau ́ ~ к \alpha ı ~ \varepsilon ́ \chi о v v ~ \tau \eta ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~ v \alpha$

 толıка́ $\sigma \tau 0 \vee \mathrm{H} / \mathrm{Y}$.

2.5.2. $\Sigma \kappa о v \lambda \eta ́ \kappa \iota \alpha$

[^16]

 $\kappa \omega ́ \delta$ кац $\tau \omega v \pi \rho о \gamma \rho \alpha \mu \mu \alpha ́ \tau \omega v$ аvтஸ́v $\mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \varepsilon \mu \pi \varepsilon \rho є \varepsilon ́ \chi \varepsilon \tau \alpha l ~ \sigma \tau \alpha ~ \lambda \varepsilon \gamma о ́ \mu \varepsilon v \alpha ~ \delta \eta \mu о \varphi \lambda \lambda \eta ́$

 غ́v人 $\sigma \cup \gamma \kappa \varepsilon \kappa \rho ц \varepsilon ́ v o ~ \gamma \varepsilon \gamma о v o ́ s . ~ T o ~ \varepsilon v \varepsilon \rho \gamma о \pi о щ \mu \varepsilon ́ v o ~ \pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \sigma \tau \alpha \mu \alpha \tau \eta ́ \sigma \varepsilon ı ~ \tau \eta ~$

 $\eta \mu \varepsilon \rho о \mu \eta$ ví $^{\alpha}$ ($\omega \rho о \lambda о \gamma 1 \alpha к \eta ́ \beta o ́ \mu \beta \alpha$-time bomb).

2.5.5. Ave $1 \theta v ́ \mu \eta \tau \eta$ А $\lambda \lambda \eta \lambda о \gamma \rho \alpha \varphi i ́ \alpha$

 о́роя $\alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha 1, \pi \varepsilon \rho เ \sigma \sigma o ́ \tau \varepsilon \rho о, ~ \sigma \tau \eta \nu ~ \alpha \pi о \sigma \tau о \lambda \eta ́ ~ \mu \varepsilon \gamma \alpha ́ \lambda \omega \nu ~ \pi о \sigma о \tau \eta ́ \tau \omega \nu ~ \mu \eta \nu \nu \mu \alpha ́ \tau \omega v, ~ \mu \varepsilon$

 $\pi \rho о \omega ́ \theta \eta \sigma \eta \tau \omega \nu \pi \rho о$ öv $\tau \omega \nu \mu \mu \varsigma$ в $\tau \alpha \iota \rho \varepsilon i ́ \alpha \varsigma . ~ \Sigma \tau \eta \nu ~ \pi о \rho \varepsilon i ́ \alpha, ~ \pi о \lambda \lambda \varepsilon ́ \varsigma ~ \alpha ́ \lambda \lambda \varepsilon \varsigma ~ \mu о \rho \varphi \varepsilon ́ \varsigma ~ к \alpha ı ~ \mu \varepsilon ́ \sigma \alpha ~$
 messaging spam, Usenet newsgroup spam, Web search engines spam, web logs spam, кaı mobile phone messaging spam ${ }^{18}$.

[^17]

 оঠ$\eta \gamma \circ$ र́v $\varepsilon ์ \tau \sigma \iota ~ \sigma \varepsilon ~ v \pi \varepsilon \rho \varphi o ́ \rho \tau \omega \sigma \eta . ~$

 $\chi \rho o ́ v i \alpha$. Oı $\varepsilon \pi \imath \theta \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma, ~ \pi \rho \alpha \gamma \mu \alpha \tau о \pi о \iota o v ́ v \tau \alpha ı ~ \alpha \pi o ́ ~ \tau o v \varsigma ̧ ~ \beta \alpha ́ v \delta \alpha \lambda o v \varsigma ~(v a n d a l s) . ~ T \alpha ~ \kappa i ́ v \eta \tau \rho \alpha ~$
 ขлๆрєбєஸ́v.

 $\pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta$, ε íval o $\chi \rho o ́ v o s ~ \pi o v ~ \theta \alpha ~ \alpha \pi \alpha ı \tau \eta \theta \varepsilon i ́ ~ \gamma ı \alpha ~ \tau \eta \nu ~ \varepsilon \pi i \delta ı o ́ \rho \theta \omega \sigma \eta$. Av oı $\zeta \eta \mu \varepsilon \varepsilon ́ \varsigma ~ \pi o v$

[^18]

2.5.7. Пєıратєía ovoцó $\tau \omega v \chi$ đ́роv

2.6. Пєıратєía Моүıбцıкоv́

 $\varepsilon \varphi \alpha \rho \mu$ обє́ $\alpha v \tau \alpha \lambda \lambda \alpha \gamma \eta \varsigma^{\alpha} \alpha \rho \chi \varepsilon i ́ \omega v$ (pear to pear).

[^19]

 $\varepsilon \lambda \varepsilon v ́ \theta \varepsilon \rho \alpha$ бто $\Delta 1 \alpha \delta i ́ \kappa \tau v o ~ \kappa \alpha l ~ \varepsilon ́ \chi \varepsilon ı ~ \tau \eta ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~ v \alpha ~ \alpha \pi \varepsilon v \varepsilon \rho \gamma о \pi о เ \varepsilon i ́ ~ \tau \alpha ~ \mu \varepsilon ́ \tau \rho \alpha ~ \pi \rho о б \tau \alpha \sigma i ́ \alpha \varsigma ~ \tau \omega v ~$

2.7. Еүк $1 \eta \not \mu \alpha \tau \alpha \sigma \tau 0 \Delta \mathrm{t} \alpha \delta$ íктvo

Н $\alpha \pi \alpha ́ \tau \eta ~ \sigma \tau о ~ \sigma \cup \mu \beta \alpha \tau \iota к o ́ ~ к o ́ \sigma \mu o ~ \varepsilon i ́ v \alpha ı ~ \varepsilon ́ v \alpha ~ \alpha \pi o ́ ~ \tau \alpha ~ \pi ı ~ \sigma v v \eta \theta \imath \sigma \mu \varepsilon ́ v \alpha ~ \varepsilon \gamma к \lambda \eta ́ \mu \alpha \tau \alpha . ~ Н ~ \varepsilon \mu \varphi \alpha ́ v ı \sigma \eta, ~$

 $\Delta 1 \alpha \delta i \kappa \tau \cup ́ o v^{22}$:

2.7.1. A $\pi \alpha ́ \tau \eta \mu \varepsilon$ e-mail

Н $\alpha \pi \alpha ́ \tau \eta, \mu \varepsilon \tau \eta \chi \rho \eta ́ \sigma \eta ~ \tau о v ~ \eta \lambda \varepsilon \kappa \tau \rho о v ı к о v ́ ~ \tau \alpha \chi \cup \delta \rho о \mu \varepsilon i ́ o v, ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \tau \eta \nu ~ \sigma v \chi v o ́ \tau \varepsilon \rho \eta ~ \mu о \rho \varphi \eta ́$

 бколо́, $\tau \eta \nu \alpha \pi о ́ \sigma \pi \alpha \sigma \eta ~ \chi \rho \eta \mu \alpha \tau \iota \kappa ஸ ́ v ~ \pi о \sigma \omega ́ v ~ \kappa \alpha ı ~ \pi \rho о \sigma \omega \pi ı \kappa ळ ́ v ~ \sigma \tau о \chi \chi \varepsilon i ́ \omega v . ~$

2.7.2. А $\pi \alpha ́ \tau \eta \mu \varepsilon \pi ı \sigma \tau \omega \tau \iota \kappa \varepsilon ́ \varsigma ~ К \alpha ́ \rho \tau \varepsilon \varsigma ~$

[^20]

 тov $\Delta 1 \alpha \delta ı \tau v ́ o v . ~ M \varepsilon ~ \tau \eta \nu ~ \tau \varepsilon \chi v o \lambda o \gamma i ́ \alpha ~ « w e b s n i f f e r », ~ \pi \alpha \rho \alpha \kappa о \lambda о v \theta \varepsilon i ́ \tau \alpha ı ~ \eta ~ \mu \varepsilon \tau \alpha ́ \delta o \sigma \eta ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~$

2.7.3. K $\lambda о \pi \eta$ 亿́ $\tau \alpha v \tau 0 ́ \tau \eta \tau \alpha \varsigma$

 $\alpha \pi о Ө \eta \kappa \varepsilon \cup \mu \varepsilon ́ v \varepsilon \varsigma ~ \sigma \varepsilon ~ \eta \lambda \varepsilon \kappa \tau \rho о v ı \kappa \varepsilon ́ \varsigma ~ \beta \alpha ́ \sigma \varepsilon ı \varsigma ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~ \gamma ı \alpha ~ \delta ı \alpha ́ \varphi о \rho о v \varsigma ~ \sigma к о \pi о v ́ \varsigma ~(\pi . \chi . ~ \varepsilon \mu \pi о \rho ı к о v ́ \varsigma, ~$

 $\alpha v \tau \pi о \psi i ́ \alpha \sigma \tau \omega \vee \pi \varepsilon \rho \alpha \sigma \tau \iota \kappa \dot{v}$.

 $\pi \alpha \rho \alpha \lambda \eta \pi \tau \dot{v} \leqslant$ к. α.

[^21] $\pi \rho о \sigma \omega \pi \iota \kappa \alpha ́ ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha$.

 $\kappa \alpha \imath ~ \chi \rho \eta \sigma \mu о \pi о є \varepsilon ́ ~ \gamma ı \alpha ~ \tau \eta v ~ \alpha \gamma о \rho \alpha ́ ~ \alpha \gamma \alpha \theta \omega ́ v ~ \mu \varepsilon ́ \sigma \omega ~ \tau о v ~ \Delta l \alpha \delta ı \kappa \tau v ́ o v . ~$

- Avoí
- $\Delta \eta \mu 10 \cup \rho \gamma \omega ́ v \tau \alpha \varsigma ~ \pi \lambda \alpha \sigma \tau \varepsilon ́ \varsigma ~ \pi ı \sigma \tau \omega \tau ı \kappa \varepsilon ́ \varsigma ~ \kappa \alpha ́ \rho \tau \varepsilon \varsigma, ~ \alpha ́ \delta \varepsilon ı \varepsilon \varsigma ~ о \delta ŋ ́ \gamma \eta \sigma \eta \varsigma, ~ \delta ı \alpha \beta \alpha \tau \eta ́ \rho ı \alpha ~ к \alpha ı ~ \tau \alpha v \tau о ́ \tau \eta \tau \varepsilon \varsigma ~$

 $\varepsilon \pi \iota \sigma \tau \rho о \varphi$ ท́ фо́ $о$ ои.

2.7.4. Еغ́ $\tau \lambda \nu \mu \alpha \chi \rho \eta ́ \mu \alpha \tau \sigma \varsigma$

 $\pi \rho о \varepsilon ́ \lambda \theta \varepsilon ı ~ \alpha \pi o ́ ~ \pi \alpha \rho \alpha ́ v о \mu \varepsilon \varsigma ~ \delta \rho \alpha \sigma \tau \eta \rho ı ́ \tau \eta \tau \varepsilon \varsigma . ~ Н ~ \delta ı \alpha \delta ı к \alpha \sigma i ́ \alpha, ~ \pi о v ~ \alpha к о \lambda о v \theta \varepsilon i ́ t \alpha ı ~ \alpha \pi o ́ ~ \tau о и \varsigma ~$

[^22]

1. Email Generator Platinum, (2007), «Еилорıко́ $\boldsymbol{\lambda} \boldsymbol{\gamma} \boldsymbol{\gamma} \iota \boldsymbol{\iota} \iota \kappa$ ó», $\alpha v \alpha \kappa \tau \eta ์ \theta \eta \kappa \varepsilon \alpha \pi o ́$ http://www.email-business.com/index_en.htm
 http://www.programurl.com/software/harvester.htm
2. Lipton. J., (2007), «Beyond Cybersquatting Taking Domain Name Disputes past Trademark Policy», $\alpha v \alpha \kappa \tau \emptyset \emptyset \eta \emptyset \kappa \varepsilon \alpha \pi$ ó http://www.law.wfu.edu/prebuilt/w08-lipton.pdf
3. Newman, R. (2004). «Identity Theft». United States Department of Justice.
4. Sinrod E., Reilly W., (2000). «Cyber-crimes: A Practical approach to the application of Federal Computer Laws». Santa Clara Computer and high technology law journal.

 $\alpha \pi$ ó http://www.whatprice.co.uk/financial.html
5. Wikipedia, (2007), «Spam», $\alpha v \alpha \kappa \tau \grave{\eta} \theta \eta \kappa \varepsilon \alpha \pi$ ó http://el.wikipedia.org/wiki/Spam

 Тралє弓白v
 А $\delta \eta \mu \sigma \sigma \dot{\varepsilon} \varepsilon \tau \eta$.

єүк入и́ $\mu \boldsymbol{\tau} \boldsymbol{\sigma}$

3.1. H $\alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha \sigma \tau 0 ~ \Delta ı \alpha \delta i ́ к \tau v o$

 оו кívסטvoı $\varepsilon \pi \imath \theta \varepsilon ́ \sigma \varepsilon \omega v ~ \kappa \alpha ı \tau \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \alpha v \tau ஸ ́ v . ~$

 $\varepsilon v o ́ \varsigma ~ o \rho \gamma \alpha v i \sigma \mu o v ́ . ~ \Sigma \tau о \chi \varepsilon v ́ \varepsilon \iota ~ \sigma \tau \eta \nu ~ \alpha \pi о \tau \rho о \pi \grave{~} \varepsilon \kappa \delta \grave{\lambda \lambda \omega \sigma \eta \varsigma ~ \mu 1 \alpha \varsigma ~ \varepsilon \pi i \theta \varepsilon \sigma \eta \varsigma, ~ \mu \varepsilon ́ \sigma \omega ~ \tau \eta \varsigma ~}$ $\alpha \pi 0 \theta \dot{\alpha} \rho \rho \cup v \sigma \eta \varsigma ~ \tau о v$ ع $\pi \imath \tau \imath \theta \varepsilon ́ \mu \varepsilon v o v ~ к \alpha ı ~ \tau \eta \varsigma ~ \alpha v \tau i ́ \delta \rho \alpha \sigma \eta \varsigma ~ \alpha \pi o ́ ~ \tau о ~ \alpha \rho \chi ı к o ́ ~ \sigma \tau \alpha ́ \delta ı ~ \varepsilon к \delta \tilde{\eta} \lambda \omega \sigma \eta \varsigma ~ \tau \eta \varsigma$ єлíӨєбŋร.

[^23]
3.3. Кшбькоí лро́б阝абףร

 ovó $\mu \alpha \tau \circ \varsigma ~ \chi \rho \eta ́ \sigma \tau \eta ~(u s e r ~ I D) ~ к \alpha ı ~ \varepsilon v o ́ ̧ ~ \kappa \omega \delta ı к о v ́ ~ \pi \rho o ́ \sigma \beta \alpha \sigma \eta \varsigma ~(p a s s w o r d) ~ \gamma l \alpha ~ v \alpha ~ \varepsilon \pi ı \tau \rho \varepsilon ́ \psi o v v ~ \tau \eta \nu$

 $\alpha \sigma \varphi \alpha ́ \lambda \varepsilon \iota \alpha \varsigma ~ \pi о v ~ \pi \rho о \sigma \varphi \varepsilon ́ \rho \varepsilon \imath ~(\varepsilon \varphi о ́ \sigma о v ~ \beta \varepsilon ́ \beta \alpha ı \alpha ~ \tau \eta \rho о и ́ v \tau \alpha ı ~ o l ~ \alpha \pi \alpha \rho \alpha i ́ \tau \eta \tau \varepsilon \varsigma ~ \pi \rho о и ̈ \pi о \theta \varepsilon ́ \sigma \varepsilon ı \varsigma), ~ \tau ข \gamma \chi \alpha ́ v \varepsilon ı ~$

 $\sigma \cup \mu \beta \alpha ́ \lambda \varepsilon \iota ~ \sigma \tau \eta \nu \alpha \pi о \kappa \alpha ́ \lambda \nu \psi \eta \tau \omega \nu \kappa \omega \delta \iota \kappa ळ ́ v \tau$ тоv.

 тоv $\gamma \rho \alpha ́ \psi \varepsilon ı ~ \sigma \varepsilon ~ \varepsilon ́ v \alpha ~ к о \mu \mu \alpha ́ \tau \iota ~ \chi \alpha \rho \tau i ́, ~ \delta ı \varepsilon v к о \lambda v ́ v o v \tau \alpha \varsigma ~ \tau \eta \nu ~ \delta ı \alpha \rho \rho о ŋ ́ ~ \tau о v ~ \varepsilon \varphi o ́ \sigma о \nu ~ \tau о ~ \chi \alpha \rho \tau i ́ ~$ $\alpha \pi о \lambda \varepsilon \sigma \theta \varepsilon i ́ ~ \eta ́ ~ \kappa \lambda \alpha \pi \varepsilon i ́ . ~$
 тоv кю

[^24]

 $\varepsilon \pi \iota \tau v \gamma \chi \alpha ́ v o \cup v \tau \eta \nu \alpha \pi o ́ \kappa \tau \eta \sigma \eta \tau \omega \nu \kappa \omega \delta \iota \kappa \omega ́ v .{ }^{27}$
 $\mu \pi о \rho \varepsilon i ́ ~ v \alpha$ غ́ $\chi \varepsilon \imath ~ \omega \varsigma ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \tau \eta v ~ \alpha v \alpha ́ \kappa \tau \eta \sigma \eta ~ \kappa \omega \delta ı \kappa ต ́ v ~ \pi \rho o ́ \sigma \beta \alpha \sigma \eta \varsigma . ~ Г 1 \alpha ~ \pi \alpha \rho \alpha ́ \delta \varepsilon ı \gamma \mu \alpha, ~ \eta$

3.4. Хрฑ́бๆ $\lambda о \gamma เ \sigma \mu \kappa к v ์ ~ \alpha \sigma \varphi \alpha \lambda \varepsilon i ́ \alpha \varsigma$,

Н $\chi \rho \eta ́ \sigma \eta ~ \pi \alpha \kappa \varepsilon ́ \tau \omega \nu ~ \lambda о \gamma ı \sigma \mu \kappa о v ́ ~ к \alpha \tau \alpha ́ ~ \tau о \nu ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu o ́ ~ \tau \eta \varsigma ~ \alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha \varsigma ~ \varepsilon v o ́ \varsigma ~ \sigma ט \sigma \tau \eta ́ \mu \alpha \tau о \varsigma, ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~$
 عívaı $\tau \alpha$ antivirus $\kappa \alpha _$firewalls.

3.5. Моүıбцıкó Antivirus

[^25]

 $\lambda \varepsilon \iota \tau \circ \cup \rho \gamma i ́ \alpha \varsigma ~ \tau о \cup ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma$.

3.6. Firewalls

 Intranet $\mu ı \alpha \varsigma \varepsilon \pi \downarrow \chi \varepsilon i ́ p \eta \sigma \eta \varsigma), \alpha \pi o ́ ~ \varepsilon ́ v \alpha ~ \varepsilon \xi ต \tau \varepsilon \rho ı \kappa o ́ ~ \mu \eta ~ \alpha \sigma \varphi \alpha \lambda \varepsilon ́ \varsigma ~ \delta i ́ к \tau v o, ~ o ́ \pi \omega \varsigma ~ \varepsilon i ́ v \alpha ı ~ \tau o ~ I n t e r n e t . ~$

T $\alpha \pi \varepsilon \rho \iota \sigma \sigma o ́ \tau \varepsilon \rho \alpha$ Firewalls $\varepsilon \pi \iota \tau \varepsilon \lambda$ ov́v δ vo $\beta \alpha \sigma 兀 \kappa \varepsilon ́ \varsigma ~ \lambda \varepsilon ı \tau о \cup \rho \gamma i ́ \varepsilon \varsigma ~ \alpha \sigma \varphi \alpha \lambda \varepsilon i ́ \alpha \varsigma^{28}$:

B) Пúd $\varepsilon \varsigma \varepsilon \varphi \alpha \rho \mu о \gamma \dot{\rho}$ (Application proxy gateways), $\pi о v \pi \rho о \sigma \varphi \varepsilon ́ \rho о v \nu ~ v \pi \eta \rho \varepsilon \sigma i ́ \varepsilon \varsigma ~ \sigma \tau о \cup \varsigma$

[^26]
3.7. Кролтоүрафí $\& \alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha$

Н кролтоүрафí α (cryptography) $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \mu \varepsilon ́ \rho o s ~ \tau \eta \varsigma ~ к \rho \cup \pi \tau о \lambda о \gamma i ́ \alpha \varsigma ~(c r y p t o l o g y), ~ \tau \eta \varsigma ~$

 $\tau \eta \nu \varepsilon \xi \alpha \sigma \varphi \alpha ́ \lambda ı \sigma \eta \tau \eta \varsigma \alpha \sigma \varphi \alpha ́ \lambda \varepsilon 1 \alpha \varsigma \tau \eta \varsigma \pi \lambda \eta \rho \circ \varphi о \rho i ́ \alpha \varsigma$.

 (integrity) $\kappa \alpha \imath \eta \mu \eta \alpha \pi о \pi \sigma i \eta \sigma \eta \pi \alpha \rho \alpha \lambda \alpha \beta \dot{\eta} \alpha \pi о \sigma \tau o \lambda \dot{\eta} \varsigma$ (non redudiation). ${ }^{30}$

 $\sigma v \mu \beta o ́ \lambda \omega v, \alpha v \tau i ́, \gamma 1 \alpha \tau \alpha \sigma v ́ \mu \beta \circ \lambda \alpha \tau \eta \varsigma \alpha \lambda \varphi \alpha \beta \not ์ \tau \circ v$.

T $\alpha \beta \alpha \sigma ル \alpha ́ ~ \sigma \tau о \chi \chi \varepsilon i ́ \alpha, ~ \pi о v ~ \alpha \pi о \tau \varepsilon \lambda о и ́ v ~ \varepsilon ́ v \alpha ~ \sigma ט ́ \gamma \chi \rho о v o ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ к \rho v \pi \tau о \gamma \rho \alpha ́ \varphi \eta \sigma \eta \varsigma \varsigma ~ \varepsilon i ́ v \alpha ı ~ \tau \varepsilon ́ \sigma \sigma \varepsilon \rho \alpha: ~$

1. To $\alpha \rho \chi$ ккó $\mu \eta{ }^{\prime} v \nu \mu \alpha$ (plaintext)

 $\pi \alpha \rho \alpha \lambda \eta ́ \pi \tau \eta$.
 $\alpha \lambda \gamma о ́ \rho \imath \theta \mu о \imath ~ \sigma \tau \eta \nu \delta \iota \alpha \delta ı \alpha \sigma i ́ \alpha ~ к \rho \cup \pi \tau о \gamma \rho \alpha ́ \varphi \eta \sigma \alpha$ каı $\alpha \pi о к \rho v \pi \tau о \gamma \rho \alpha ́ \varphi \eta \sigma \alpha$.
[^27]Ало́ тєұขıкŋ́s $\alpha \pi o ́ \psi \varepsilon \omega \varsigma, ~ \eta ~ к р и \pi \tau о \gamma р \alpha \varphi i ́ \alpha ~ \delta ı \alpha к р i ́ v \varepsilon \tau \alpha ı ~ \sigma \varepsilon ~ \delta v ́ o ~ \beta \alpha \sigma ı к \varepsilon ́ \varsigma ~ к \alpha \tau \eta \gamma о р i ́ \varepsilon \varsigma . ~ Т \eta ~$
 $\iota \delta \omega \tau \iota \kappa o ́ ~ \kappa \lambda \varepsilon \iota \delta i ́ ~ \kappa \alpha \imath ~ \tau \eta \nu \alpha \sigma ט ́ \mu \mu \varepsilon \tau \rho \eta$ крилтоүрафía (asymmetric cryptography) $\sigma \tau \eta \nu$ олоí α

3.7.1. $\Sigma v \mu \mu \varepsilon \tau \rho \iota к \eta ́ к \rho v \pi \tau о \gamma \rho \alpha \varphi i ́ \alpha$

 $\kappa \lambda \varepsilon \varepsilon \delta i^{31}$

3.7.2. Абv́ $\mu \mu \varepsilon \tau \rho \eta ~ к \rho v \pi \tau о \gamma \rho \alpha ф i ́ \alpha ~$

 $\alpha \pi о к р и л \tau о \gamma \rho \alpha ́ \varphi \eta \sigma \eta$.
 $\alpha \pi o ́ ~ \tau \eta \nu ~ \sigma \cup \mu \mu \varepsilon \tau \rho ı к ŋ ́ ~ к \alpha ı, ~ \varepsilon \pi ı \pi \lambda \varepsilon ́ o v, ~ \delta \varepsilon v ~ \alpha \pi \alpha ı \tau \varepsilon i ́ t \alpha ı ~ \alpha \sigma \varphi \alpha \lambda \eta ́ \varsigma ~ \delta i ́ \alpha v \lambda о \varsigma ~ \varepsilon \pi ı к о \imath v \omega v i ́ \alpha s ~ \gamma l \alpha ~ \tau \eta \nu$

[^28]

 $\alpha \pi о к \rho \cup \pi \tau о \gamma \rho \alpha \varphi \eta \theta \varepsilon i ́ ~ \mu о ́ v o ~ \mu \varepsilon ~ \tau о ~ \delta \eta \mu о ́ \sigma ь ~ к \lambda \varepsilon є \delta i ́, ~ \pi о v ~ \mu \pi о \rho \varepsilon i ́ v \alpha ~ \tau о ~ \varepsilon ́ \chi \varepsilon ı ~ о \pi о ю о б \delta \grave{\pi о \tau \varepsilon, ~} \alpha \lambda \lambda \alpha \dot{\eta}$
 $\pi \rho о \sigma \delta ı \rho i \zeta ̧ \varepsilon 1 ~ \kappa \alpha ı ~ \mu о v \alpha \delta ı к \alpha ́ ~ \tau о v ~ \alpha \pi о \sigma \tau о \lambda \varepsilon ́ \alpha ~ \alpha v \tau о v ́ . ~$

3.7.3. $\Delta \iota \alpha \chi \varepsilon i ́ \rho ı \sigma \eta ~ \delta \eta \mu о \sigma i ́ \omega v ~ к \lambda \varepsilon ı \delta ı \omega ́ v ~$

3.8. Avapopȩ́ 3ov кєфадаíov

1. Wikipedia, (2012), «K $\boldsymbol{\rho v \pi \tau о \gamma \rho \alpha \varphi i ́ \alpha » , ~} \alpha v \alpha \kappa \tau \eta \dot{\eta \eta \kappa \varepsilon ~} \alpha \pi$ о́ http://el.wikipedia.org/wiki/Kрvлтоүрацía
 ठıктv́ఱv». Екסóб\&ı̧ Avíкоvえа.

$\varepsilon \gamma \kappa \lambda \eta ́ \mu \alpha \tau 0 \varsigma$

4.1. Eı $\sigma \alpha \gamma \omega \gamma{ }^{\prime}$

4.2. $\Psi \eta \varphi \iota \alpha \kappa \varepsilon ́ \varsigma ~ \alpha \pi о \delta \varepsilon i ́ \xi \varepsilon ı \varsigma ~ \& ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~$

 غ́ $\chi \varepsilon \iota ~ \psi \eta \varphi ๙ к \eta ́ ~ \mu о р \varphi \eta ́ . ~ O ~ S W G D E ~(S c i e n t i f i c ~ W o r k i n g ~ G r o u p ~ o n ~ D i g i t a l ~ E v i d e n c e), ~ \mu ı \alpha ~$

 $\mu о \rho \varphi \eta ́, \delta 1 \alpha \chi \omega \rho i ́ \zeta о \nu \tau \alpha ́ \varsigma \tau \iota \varsigma ~ \sigma \varepsilon:$

[^29]

 олоі́ $\omega \nu \mu \varepsilon \tau \alpha \delta i ́ \delta o v \tau \alpha ı ~ \pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma ~ к \alpha ı ~ \alpha \nu \tau є к \varepsilon ́ ́ \mu \varepsilon v \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v ต v . ~$

 аขтєкві́цєขо.

4.3. Еvтолıб μ о́ $\eta \lambda \varepsilon \kappa \tau \rho о v \iota \kappa о v ์ ~ \varepsilon \gamma к \lambda \eta \mu \alpha \tau i ́ \alpha$

4.3.1. Ар $\varepsilon^{\varepsilon} \alpha \kappa \kappa \alpha \alpha \gamma \rho \alpha \varphi \eta ́ \varsigma(\log$ files)

 System log каı Security log.

[^30]
 $\mu \alpha \tau о \varsigma$.

Екто̧́ ало́ то $\lambda \varepsilon ı \tau о \cup \rho \gamma ı о ́ ~ \sigma v ́ \sigma \tau \eta \mu \alpha, ~ \alpha \rho \chi \varepsilon i ́ \alpha ~ к \alpha \tau \alpha \gamma \rho \alpha \varphi ท ́ \varsigma ~ \delta \eta \mu ю и \rho \gamma о и ́ v \tau \alpha ı ~ к \alpha ı ~ \alpha \pi o ́ ~ \alpha ́ \lambda \lambda \lambda \varepsilon \varsigma ~$ $\varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ \varsigma$. To firewall, $\omega \varsigma \beta \alpha \sigma \iota \kappa o ́ ~ \varepsilon \rho \gamma \alpha \lambda \varepsilon i ́ o, \pi о v$ в $\lambda \varepsilon ́ \gamma \chi \varepsilon ı ~ \tau \eta \nu ~ к i ́ v \eta \sigma \eta ~ \alpha \pi o ́ ~ к \alpha ı ~ \pi \rho о \varsigma ~ \varepsilon ́ v \alpha$

4.3.2. $\Sigma v v \alpha \gamma \varepsilon \rho \mu о i ́, \pi \rho о \varepsilon เ \delta о \pi о ו \eta ์ \sigma \varepsilon ı \varsigma, \alpha v \alpha \varphi о \rho \varepsilon ́ \varsigma$

T α а $\rho \chi \varepsilon i ́ \alpha ~ \kappa \alpha \tau \alpha \gamma \rho \alpha \varphi \eta ́ s ~ \varepsilon i ́ v \alpha ı ~ \varepsilon ́ v \alpha ~ \mu o ́ v o ~ \varepsilon i ́ \delta o s ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega v, ~ \pi о v ~ \mu \pi о \rho о v ́ v ~ v \alpha ~ \alpha v \tau \lambda \eta \theta$ ov́v $\alpha \pi o ́ ~ \tau о ~$

Avapopés (Reports): Av к $\alpha \iota$ оı $\pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma ~ \alpha \sigma \varphi \alpha \lambda \varepsilon i ́ \alpha \varsigma ~ \alpha \pi o ́ ~ \tau о ~ f i r e w a l l ~ \alpha \pi о \theta \eta к \varepsilon v ́ o v \tau \alpha ı ~ \sigma \tau \alpha ~$ $\alpha \rho \chi \varepsilon i ́ \alpha ~ к \alpha \tau \alpha \gamma \rho \alpha \varphi \eta ́ \varsigma, ~ o l ~ \alpha v \alpha \varphi о \rho \varepsilon ́ \varsigma ~ \mu \pi о \rho о и ́ v ~ v \alpha ~ \delta \omega ́ \sigma o v v ~ \varepsilon \pi ı \pi \rho o ́ \sigma \theta \varepsilon \tau \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha, ~ o ́ \pi \omega \varsigma ~ \tau \eta v$

[^31] $\sigma \nu \chi \vee o ́ \tau \eta \tau \alpha \sigma \varphi \alpha \lambda \mu \alpha ́ \tau \omega v$

4.3.3. Ev $\tau о \pi \iota \sigma \mu o ́ \varsigma ~ o v o ́ \mu \alpha \tau o \varsigma ~ \& ~ \delta ı \varepsilon v ́ \theta v v \sigma \eta ~ I P ~$

 $\alpha \nu \tau$ í $\tau о \nless \chi$ о $\alpha \rho \imath \theta \mu$ IP. ${ }^{35}$

 $\pi \rho о \eta ́ \lambda \theta \varepsilon \eta$ како́ßочдๆ $\varepsilon \pi i \theta \varepsilon \sigma \eta$.

Н єрүабía аvтஸ́ $\mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \delta є є к л \varepsilon \rho \alpha ı ө \theta \varepsilon i ́ ~ \mu \varepsilon ~ \delta ı \alpha ́ \varphi о \rho \alpha ~ \varepsilon \rho \gamma \alpha \lambda \varepsilon i ́ \alpha ~ \lambda о \gamma ı \sigma \mu ı о ט ́, ~ \tau \alpha ~ о л о і ́ \alpha ~$

 www.dnsreport.com $\mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \delta о \theta \varepsilon i ́ ~ \mu l \alpha ~ \eta \lambda \varepsilon \kappa \tau \rho о v ı к \eta ́ ~ \delta ı \varepsilon v ́ \theta v v \sigma \eta ~ \eta ́ ~ \delta є \varepsilon v ́ \theta v v \sigma \eta ~ \eta \lambda \varepsilon \kappa \tau \rho о v ı к о v ́ ~$

[^32]
4.3.4. Мףvv́ $\mu \alpha \tau \alpha$ ๆ $\lambda \varepsilon \kappa \tau \rho о v \iota к о v ́ ~ \tau \alpha \chi v \delta \rho о \mu \varepsilon i ́ o v ~$

 к. ${ }^{\alpha}$.
$\Gamma 1 \alpha$ тоvs $\lambda o ́ \gamma o v s ~ \alpha v \tau o v ́ s, ~ \eta ~ \varepsilon ט ́ \rho \varepsilon \sigma \eta ~ \tau о v ~ \alpha \pi о \sigma \tau о \lambda \varepsilon ́ \alpha ~ \tau \omega v ~ \mu \eta \nu v \mu \alpha ́ \tau \omega v ~ \eta \lambda \varepsilon \kappa \tau \rho о v ı к о и ́ ~$

 $\pi \rho о ́ \sigma \beta \alpha \sigma \eta$ бтıৎ $\pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma, ~ \varepsilon i ́ v \alpha ı ~ \delta v v \alpha \tau \eta ́ ~ \mu \varepsilon ́ \sigma \omega ~ \tau \omega v ~ \chi \rho \eta \sigma \mu о \pi о ю v ́ \mu \varepsilon v \omega v ~ \varepsilon \varphi \alpha \rho \mu о \gamma \omega ́ v ~$ $\eta \lambda \varepsilon \kappa \tau \rho о$ иккои́ $\tau \alpha \chi \cup \delta \rho о \mu \varepsilon$ íov.

4.4. Aбтvvoцí́ \& $\boldsymbol{\eta} \lambda \varepsilon \kappa \tau \rho о v \iota \kappa o ́ ~ \varepsilon ́ \gamma к \lambda \eta \mu \alpha$

[^33]

 то EAST (European ATM Security Team), тo IT Fraud WG $\tau \eta \varsigma$ Evрюлаӥки́s Tралє弓ıки́s

[^34]

 $\mu \alpha к \rho о \pi \rho о ́ \theta \varepsilon \sigma \mu \eta \varsigma$ лодı兀וкฑ́ऽ тоט૬.
($\boldsymbol{\beta}) \Sigma \varepsilon \varepsilon \theta v i \kappa o ́ ~ \varepsilon \pi i ́ \pi \varepsilon \delta о, ~ \eta ~ E E T ~ \sigma v \mu \mu \varepsilon \tau \varepsilon ́ \chi \varepsilon ı ~ \sigma \varepsilon ~ \pi \rho \omega \tau о ß о v \lambda i ́ \varepsilon \varsigma, ~ o ́ ~ \pi \omega \varsigma ~ \eta ~ O \mu \alpha ́ \delta \alpha ~ \Delta \rho \alpha ́ \sigma \eta \varsigma ~ \gamma 1 \alpha ~ \tau \eta ~$

 $\tau \rho \alpha ́ \pi \varepsilon \zeta \varepsilon \varsigma-\mu \varepsilon ́ \lambda \eta ~ \tau \eta \varsigma, \pi \alpha \rho \alpha к о \lambda о v \theta \varepsilon i ́ ~ \delta ı \varepsilon \xi о \delta ı к \alpha ́ ~ \tau о ́ \sigma о ~ \tau \alpha ~ Ө \varepsilon ́ \mu \alpha \tau \alpha ~ \pi о v ~ \pi \rho о к и ́ \pi \tau о v v ~ \alpha \pi о ́ ~$

 $\delta \rho \alpha ́ \sigma \tau \eta$, то опоío $\gamma 1 \alpha$ ка́ $\theta \varepsilon ~ \chi \rho \eta ́ \sigma \tau \eta ~ \tau о v ~ I v \tau \varepsilon \rho v \varepsilon ́ \tau ~ \varepsilon i ́ v \alpha ı ~ \mu о v \alpha \delta ı к o ́, ~ к \alpha ı ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \sigma \eta \mu \alpha \nu \tau \iota \kappa o ́ ~$
 (electronic evidence) $\delta \varepsilon v \tau \alpha v \tau i \zeta \varepsilon \tau \alpha \downarrow \mu \varepsilon \tau \alpha \pi \alpha \rho \alpha \delta о \sigma ı \alpha \kappa \alpha ́ \alpha \pi о \delta \varepsilon ı \tau \iota \kappa \alpha ́ ~ \mu \varepsilon ́ \sigma \alpha . ~ T \alpha ~ \tau \varepsilon \lambda \varepsilon v \tau \alpha i ́ \alpha, ~$

 $\pi \rho о \sigma \omega \pi \imath \kappa о v ́, \tau о ́ \tau \varepsilon ~ \tau \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \delta \varepsilon v ~ \theta \alpha ~ \varepsilon i ́ v \alpha ı ~ \tau \alpha ~ \alpha v \alpha \mu \varepsilon v o ́ \mu \varepsilon v \alpha . ~ \Sigma \tau \eta \nu ~ v \pi \eta \rho \varepsilon \sigma i ́ \alpha ~ \mu \alpha \varsigma ~ \pi \iota \sigma \tau \varepsilon v ́ \omega ~$

Алó $\tau \eta \mu \varepsilon ́ \chi \rho ı ~ \sigma \tau \imath \gamma \mu \eta ́ \varsigma ~ \varepsilon ́ \rho \varepsilon ง v \alpha ~ \varepsilon ́ \chi \varepsilon ı ~ \pi \rho о к и ́ \psi \varepsilon ı ~ o ́ \tau ı ~ \tau о ~ к v ́ к \lambda \omega \mu \alpha ~ \sigma \tau о ~ \delta ı \alpha ́ \sigma \tau \eta \mu \alpha ~ \alpha v \tau o ́ ~ \varepsilon i ́ \chi \varepsilon ~ к \alpha ́ v \varepsilon ı ~$

[^35]

 $\pi \rho о \sigma \omega \pi \imath \kappa$ к $\alpha \iota ~ \sigma ல ́ \gamma \chi \rho о \nu \alpha \tau \varepsilon \chi v ı \kappa \alpha ́ \mu \varepsilon ́ \sigma \alpha$.

 $\tau \eta \varsigma$ US-CERT (United States Computer Emergency Readness Team) $\mu l \alpha \varsigma \varepsilon \theta v i \kappa \eta ́ s ~ v \pi \eta \rho \varepsilon \sigma i ́ \alpha ~ s ~$

 Ебштєрıкळ́v.

[^36]

1^{0} B $\quad \mu \alpha \pi \rho о \pi \alpha \rho \alpha \sigma \kappa \varepsilon v \alpha \sigma \tau \iota \kappa \eta ́ \varsigma ~ \varepsilon v \varepsilon ́ \rho \gamma \varepsilon เ \alpha \varsigma^{40}$

 $\varepsilon \gamma \kappa \lambda \eta ́ \mu \alpha \tau о \varsigma ~ \kappa \alpha ı ~ \tau о ~ v о \mu ו \kappa o ́ ~ \kappa \alpha \theta \varepsilon \sigma \tau \omega ́ \varsigma ~ \tau \eta \varsigma ~ \chi \omega ́ \rho \alpha \varsigma ~ \sigma \tau \eta \nu \tau \varepsilon \lambda \varepsilon ́ \sigma \tau \eta \kappa \varepsilon . ~ Г 1 \alpha ~ \pi \alpha \rho \alpha ́ \delta \varepsilon \imath \gamma \mu \alpha, ~ \sigma ט ́ \mu \varphi \omega v \alpha$

 тахи́тєюо $\mu \varepsilon ́ \sigma о ~ \tau о v ~ \alpha \rho \mu о ́ \delta ı о ~ \varepsilon \iota \sigma \alpha \gamma \gamma \varepsilon \lambda \varepsilon ́ \alpha ~$

 غ́pevvac.

[^37]

 бтохвí ωv.

 $\theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha ~ \kappa \alpha \tau \alpha \beta \lambda \eta \theta \varepsilon i ́ ~ \kappa \alpha ́ \theta \varepsilon ~ \delta v v \alpha \tau \eta ́ ~ \pi \rho о \sigma \pi \alpha ́ \theta \varepsilon ı \alpha ~ ต ́ \sigma \tau \varepsilon ~ v \alpha ~ \alpha v \alpha \kappa \tau \eta \theta о v ́ v ~ \alpha ́ \mu \varepsilon \sigma \alpha ~ \tau v \chi o ́ v ~$

 $\mu \varepsilon \tau \alpha \varphi о \rho \alpha ́, ~ \varepsilon i ́ v \alpha ı ~ \eta ~ \sigma v \sigma к \varepsilon v \alpha \sigma i ́ \alpha, ~ о ~ \tau \rho о ́ \pi о \varsigma ~ \tau о \pi о \theta \varepsilon ́ \tau \eta \sigma \eta \varsigma ~ \sigma \tau о ~ о ́ \chi \eta \mu \alpha ~ \mu \varepsilon \tau \alpha, \varphi о р \alpha ́ \varsigma ~ к \alpha ı ~ о 七 ~$
 чๆфıккळ́v $\delta \varepsilon \delta о \mu \varepsilon ́ v ต v$.

[^38]

 $\alpha i ́ \tau \iota \alpha$ 兀ov $\varepsilon \gamma \kappa \lambda \eta ́ \mu \alpha \tau \circ \varsigma ̧ \kappa \alpha \imath \tau \eta \nu \tau \alpha \nu \tau o ́ \tau \eta \tau \alpha \tau \omega v \delta \rho \alpha \sigma \tau \omega ́ v$.

 $\pi \alpha \rho \alpha ́ \gamma o v \tau \alpha \alpha \nu \tau \iota \mu \varepsilon \tau \dot{\pi} \pi \sigma \eta ์ \varsigma ~ \tau о v$.

 $\varepsilon \gamma \kappa \lambda \dot{\prime} \mu \alpha \tau о \varsigma$.

[^39]

 عрஸ́тๆбๆร. ${ }^{43}$

 $\nu \alpha \delta \rho \alpha \sigma \tau \eta \rho ı \pi о$ Ə θ ои́v.

[^40]

Форѓа¢	Etōtкȩ́ Apyéc／ 		Pólot						
			Роөиібєı， каvoviศциоi	EגEypor ефариоүічя өєбиккои́ тлалаіо⿱	Computer Forensics	Пเбтотоіŋбๆ $\pi \rho \circ$ ö́vtev \＆ өтŋрะสเต์v аб甲àziac	Парохи́ Проїóvтөу Yтобоою́у Аб甲а́ $\boldsymbol{\varepsilon} \boldsymbol{\varepsilon} \boldsymbol{\sigma}$	¢ $\mathbf{Y} \pi \eta \rho \varepsilon \sigma i \varepsilon \varsigma$ Абүд́̀stac	Еклаíôعvбך $\boldsymbol{\sigma}$ өє́ $\mu \alpha \tau \alpha$ абралвіа¢
EAAE	$\Delta \varepsilon \varepsilon \dot{\theta} \theta \mathrm{v} \sigma \boldsymbol{\eta}$ $\pi \varepsilon \iota \sigma \tau \eta \rho i \omega v$	1） $\mathrm{E} \check{\iota} \dot{\varepsilon} \tau \alpha \sigma \eta ~ \psi \eta \varphi \underset{\alpha \kappa \omega ́ v}{ } \pi \varepsilon 1 \sigma \tau \eta \rho i \omega v$ ． 		\checkmark	\checkmark			\checkmark	
	Еүкえй $\mu \alpha \tau \sigma$ с	плєктроvıко́ $\dot{\gamma \kappa \lambda} \lambda \mu \alpha$ ．							
Yтоирувío Meтачорю́v $\kappa_{\kappa 1}$ Елィкоเขตทเต́v	Гєทкฑŋ Граццатвí Еภィкоเvตvเต่v（ГГЕ）	 Аб甲व́ $\lambda \varepsilon 1 \alpha \varsigma$ ）． （E．E．A．）．	\checkmark			\checkmark			
	ГГЕ（Гعیıк门 Г $\rho \alpha \mu \mu \alpha \tau \varepsilon \dot{\alpha} \alpha$ Пเбтолоіңбŋร （Т $\mu \eta \mu \alpha$ Тололоіпбпऽ каи Пیбтолоїŋๆऽ）	 99／5／EK） 							
Тра́лєц̆ α Eス入áóoc	Пибтютькои́ इvбтípатоя	аб甲व́̀zıac 	\checkmark	\checkmark					
Yтоирувio Ебютєрікю́v	$\Delta /$ vбп Подтtккŋ́s $\sum \chi \varepsilon \delta i \alpha \sigma \eta ร$ Ектактทร Aváүкпร	 $\pi о \lambda \varepsilon \mu к к \mathfrak{\eta}$ ． 	\checkmark	\checkmark				\checkmark	
	$Г Г \Delta \Delta \& H \Delta$（Гєvкк่ Грациатвіа $\Delta \eta \mu$ о́та， $\Delta 1 \alpha к \nu \beta \dot{\varepsilon} \rho v \eta \sigma \eta \varsigma /$／Y $\pi \eta \rho \varepsilon \sigma \dot{\sigma} \alpha$ 	 2）$\Delta \Lambda \alpha \theta \varepsilon \sigma \mu \dot{\tau} \tau \eta \tau \alpha \pi \lambda \eta \rho \circ \varphi \rho \rho i \omega ் v \sigma \tau \eta \Delta \Delta / \Sigma \chi \varepsilon \delta \delta 1 \alpha$ $\alpha v \alpha ́ \kappa \alpha \mu \psi ŋ \varsigma ~ \kappa \alpha \tau \alpha \sigma \tau \rho о \varphi \omega ́ v$. 	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	

	Etôtкés Ap才éç／ 		Pódot						
			каvoviбuoi	Eגzyzot вфарноүйя өعбиткои́ $\pi \lambda \alpha \sigma$ iov	Computer Forensics	Пıбтолоі́Пбŋ $\pi \rho о$ ӧvт ω \＆\＆ จтทрєสเฒ்ท $\alpha \sigma \varphi \alpha \lambda \varepsilon i \alpha$,	Пароди́ Прої́vtตv Yтодоню́v 	тแк่ร $\mathbf{Y} \pi \eta \rho \varepsilon \sigma$ íc Аб甲á̀ziac	$\theta \varepsilon ́ \mu \alpha \tau \alpha$ аб甲адвiaç
Yто⿱㇒日бувіо Оикоуодикю́v	ГГПГ（Гєvкŋ́ Грациатєіа П入Профориккө́v Аб甲а́えгाаऽ इvoтпид́tøv каı Пробтабіас $\Delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~ \& ~$ Yтобоо $\dot{\omega}$ v	 		\checkmark		\checkmark			\checkmark
AIIAIIX	Aveçá $\rho \tau \eta \tau \eta$ A $\rho \chi \eta$ ¢	1）Пробтабіа $\pi \rho о \sigma \omega \pi к \kappa \omega ́ v ~ \delta \delta \delta \delta о \mu \varepsilon ́ v ต v$ 	\checkmark	\checkmark				\checkmark	
A \triangle AE		 алоррйтоv．	\checkmark	\checkmark				\checkmark	
EETT	Ave $\zeta^{\prime} \dot{\alpha} \rho \tau \eta \tau \eta$ A $\rho \chi \dot{\eta}$	 	\checkmark	\checkmark					
GRNET CERT		 2）$\Pi \lambda \eta \rho \circ \varphi о ́ \rho \eta \sigma \eta$ $\sigma \tau \circ \varsigma \varsigma \chi \rho \eta \sigma \tau \varepsilon \varsigma \tau о v \mathrm{E} \Delta \mathrm{ET} \sigma \varepsilon \theta \varepsilon \dot{\mu} \mu \tau \alpha$ $\alpha \sigma \varphi \alpha{ }^{\lambda} \varepsilon \omega_{\alpha}$ ． 					\checkmark	\checkmark	\checkmark
ENISA		 $\theta \dot{\varepsilon} \mu \alpha \tau \alpha \alpha \sigma \varphi \dot{\alpha} \lambda \varepsilon 1 \alpha,$.						\checkmark	

4.8. Avapopés 4^{00} кєцадаíov

1. Peterson P., (2009), «Cyber crime lords using big business tactics: Cisco», $\alpha \vee \alpha \kappa \tau \eta \emptyset \emptyset \eta \kappa \varepsilon$ $\alpha \pi$ ó http://www.physorg.com

 Екбо́бєıऽ $\sum \alpha ́ к к о и \lambda а \varsigma . ~$

KEФAAAIO 5. Epquvๆтıкó Mépos

 Aбтvvo $\mu i ́ \alpha, \sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon \tau \alpha ~ \alpha v \alpha \varphi \varepsilon \rho o ́ \mu \varepsilon v \alpha ~ \sigma \tau \eta \nu ~ \pi \alpha \rho о v ́ \sigma \alpha ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha, ~ \theta \alpha ~ \sigma v \mu \beta \alpha ́ \lambda \lambda \varepsilon ı ~ \sigma \tau \eta \nu$

 $\lambda \varepsilon ı \tau о \cup \rho \gamma i ́ \alpha ~$ тоט $\delta \eta \mu$ обíov.
 а́ $\mu \varepsilon \sigma \eta, ~ \varepsilon \varphi o ́ \sigma о v ~ \sigma \tau о ~ \pi \lambda \eta \rho о \varphi о \rho ı \alpha к о ́ ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ к \alpha \tau \alpha \chi \omega \rho \varepsilon i ́ \tau \alpha ı ~ \eta ~ \pi \lambda \eta \rho о \varphi о р i ́ \alpha ~ \pi о v ~ \alpha \varphi о \rho \alpha ́ ~ \tau \eta v ~$

 $\sigma \nu \mu \beta \alpha ́ \lambda \lambda \varepsilon \varepsilon \imath \tau \tau \eta \nu \varepsilon \xi \alpha ́ \lambda \varepsilon \iota \psi \eta \tau \eta \varsigma$ үрацєєькраті́аร.

 $\pi \rho \varepsilon ́ \pi \varepsilon є ~ v \alpha ~ \varepsilon ́ \chi o v v ~ \pi \rho o ́ \sigma ß \alpha \sigma ๆ \eta . ~$

Eлíגoүos

 $\mu о \rho \varphi \varepsilon ́ \varsigma, ~ \alpha \mu \gamma \omega ́ \varsigma ~ \eta \lambda \varepsilon \kappa \tau \rho о v ı \kappa \omega ́ v ~ \varepsilon \gamma \kappa \lambda \eta \mu \alpha ́ \tau \omega v, \kappa \alpha ́ v o v v \tau \eta v \varepsilon \mu \varphi \alpha ́ v i \sigma \eta ́ ~ \tau 0 v \varsigma$.

 $\delta ı \kappa \alpha \ldots \sigma v ́ v \eta ~ \sigma \varepsilon \kappa \alpha ́ \theta \varepsilon ~ \chi \omega ́ \rho \alpha, ~ \mu \varepsilon \tau \alpha \beta \alpha ́ \lambda \lambda о v \tau \alpha ı$.

 $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \varepsilon ́ v \alpha ~ \sigma v v \delta v \alpha \sigma \mu o ́ ~ \tau \varepsilon \chi v o \lambda о \gamma ı \kappa ळ ́ v ~ \mu \varepsilon ́ \tau \rho \omega v ~ \alpha \lambda \lambda \alpha ́ ~ \kappa \alpha l ~ \sigma v v \varepsilon \chi о v ́ s ~ \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta ร ~ \kappa \alpha ı$ $\varepsilon \pi \mu$ о́ $\varphi \omega \sigma \eta \varsigma$ тоv $\pi \rho о \sigma \omega \pi \iota \kappa о v, \sigma \varepsilon ~ \theta \varepsilon ́ \mu \alpha \tau \alpha \alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha \varsigma$.
 غ́ $\gamma \kappa \lambda \eta \mu \alpha$ кוvov́ $\mu \varepsilon v \varepsilon \varsigma ~ \pi \rho о \varsigma ~ \delta v ́ o ~ \kappa \alpha \tau \varepsilon v \theta ט ́ v \sigma \varepsilon ı \varsigma: ~$

 $\tau \varepsilon \chi$ vo八oүíє̧ каı

 $\tau \eta \varsigma$.

ПАРАРТНМА No $\mu 0 \varepsilon \varepsilon \sigma i ́ \alpha ~ \& ~ о \rho \gamma \alpha \nu ı \sigma \mu о i ́ ~ \sigma \chi \varepsilon \tau \iota к \alpha ́ ~ \mu \varepsilon ~ \tau о ~ \varepsilon ́ \gamma к \lambda \eta \mu \alpha$

1. 'Олоюऽ $\alpha \pi о ́ ~ к \varepsilon р \delta о б к о \pi i ́ \alpha ~ \pi \alpha \rho \alpha б к \varepsilon v \alpha ́ \zeta \varepsilon 1, ~ \kappa \alpha \tau \varepsilon ́ \chi \varepsilon 1, ~ \pi \rho о \mu \eta \theta \varepsilon v ́ \varepsilon \tau \alpha 1, ~ \alpha \gamma о \rho \alpha ́ \zeta \varepsilon 1, ~ \mu \varepsilon \tau \alpha \varphi \varepsilon ́ \rho \varepsilon 1, ~$

 $\varepsilon \kappa \alpha \tau o ́ \chi 1 \lambda \not \alpha \alpha ́ \delta \omega v$ عupஸ́.

 عupต́.

бvvoцı $\lambda i ́ \alpha \varsigma$

 т $\varepsilon \lambda \varepsilon \cup \tau \alpha i ́ o v . ~ T o ~ \delta \varepsilon v ́ \tau \varepsilon \rho о ~ \varepsilon \delta \alpha ́ \varphi ю ~ \tau \eta \varsigma ~ \pi \alpha \rho \alpha \gamma \rho \alpha ́ \varphi o v ~ 1 ~ \alpha v \tau о v ́ ~ \tau о v ~ \alpha ́ \rho \theta \rho о v ~ \varepsilon \varphi \alpha \rho \mu o ́ \zeta \varepsilon \tau \alpha ı ~ к \alpha ı ~ \sigma \varepsilon ~$ $\alpha v \tau \eta \dot{\tau \eta \nu} \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta$.

 $\pi \rho о \beta \lambda \varepsilon ́ \pi$ оvт $\alpha \iota$ б兀ıৎ $\pi \alpha \rho \alpha \gamma \rho \alpha ́ \varphi o v \varsigma ~ 1 ~ к \alpha ı ~ 2 ~ \alpha v \tau о v ́ ~ \tau о v ~ \alpha ́ \rho \theta \rho o v, ~$

 $\delta \varepsilon v \mu \pi$ орои́бє v α סı $\alpha \varphi \cup \lambda \alpha \chi \theta \varepsilon i ́ ~ \delta ı \alpha \varphi о \rho \varepsilon \tau \iota к \alpha ́ . ~$

$\alpha \pi о ́ \rho \rho \eta \tau \alpha$

 д́ $\rho \theta \rho \alpha 146$ к $\alpha 147$.

3.Av o $\delta \rho \alpha ́ \sigma \tau \eta \varsigma ~ \varepsilon i ́ v \alpha l ~ \sigma \tau \eta \nu ~ v \pi \eta \rho \varepsilon \sigma \sigma i ́ \alpha ~ \tau o v ~ v o ́ \mu \mu о v ~ к \alpha \tau o ́ \chi o v ~ \tau \omega v ~ \sigma \tau о \chi \varepsilon \varepsilon ́ \omega v, ~ \eta ~ \pi \rho \alpha ́ \xi \eta ~ \tau \eta \varsigma ~$ $\pi \rho о \eta \gamma о$ и́ $\varepsilon v \eta \varsigma ~ \pi \alpha \rho \alpha \gamma \rho \alpha ́ \varphi о v ~ \tau ц \omega \rho \varepsilon i ́ \tau \alpha l ~ \mu o ́ v o ~ \alpha \nu ~ \alpha \pi \alpha \gamma о \rho \varepsilon v ́ \varepsilon \tau \alpha l ~ \rho \eta \tau \alpha ́ ~ \alpha \pi o ́ ~ \varepsilon \sigma \omega \tau \varepsilon \rho ı к o ́ ~$

 عívaı દ́va ŋ́ $\pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho \alpha$ л ρ ó $\sigma \omega \pi \alpha$.

NOMOI

- N. 2774/1999-«Г $\langle\alpha \tau \eta \nu \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~ \pi \rho о \sigma \omega \pi ı \kappa о и ́ ~ \chi \alpha \rho \alpha к \tau \eta ́ \rho \alpha ~ \sigma \tau о \nu$

 ठєठо $\mu \varepsilon ́ v ต v »$
- N. 2225/1994 ó $\pi \omega \varsigma \tau \rho \circ \pi$. $\mu \varepsilon$ N. 311/2003- «ГГ $\alpha \tau \eta \nu \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha ~ \tau \eta \varsigma ~ \varepsilon \lambda \varepsilon v \theta \dot{\rho} \rho 1 \alpha \varsigma ~ \tau \eta \varsigma$

ПРОЕДРIKO ДIATAГMA

- П. $\Delta .150 / 2001-« Н \lambda \varepsilon \kappa \tau \rho о v ı к \varepsilon ́ \varsigma ~ Ү \pi о \gamma \rho \alpha \varphi \varepsilon ́ \varsigma » ~$
- П. Δ. 47/2005-«

 $\tau \eta \nu \kappa \alpha \tau \alpha v \alpha \lambda \omega \tau \kappa \kappa \eta ́ \pi i ́ \sigma \tau \eta$.

 тŋऽ $\pi \alpha \rho o \chi \eta ́ s ~ \alpha v o ı \kappa \tau o v ́ ~ \delta ı \kappa \tau v ́ o v ~(O p e n ~ N e t w o r t ~ P r o v i s i o n ~ O N P) . ~$

 Maртíov 1996, $\sigma \chi \varepsilon \tau \iota \alpha \alpha ́ \mu \varepsilon ~ \tau \eta ~ v о \mu ı к и ́ ~ \pi р о б \tau \alpha \sigma i ́ \alpha ~ \tau \omega v ~ \beta \alpha ́ \sigma \varepsilon є \omega v ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v . ~$
 $1997 \gamma 1 \alpha \tau \eta v \pi \rho \circ \sigma \tau \alpha \sigma i ́ \alpha ~ \tau \omega v \kappa \alpha \tau \alpha v \alpha \lambda \omega \tau \omega ́ v \kappa \alpha \tau \alpha ́ \tau \iota \varsigma ~ \varepsilon \xi$ $\alpha \pi о \sigma \tau \alpha ́ \sigma \varepsilon \omega \varsigma ~ \sigma \nu \mu \beta \alpha ́ \sigma \varepsilon \iota \varsigma$.

 $\eta \lambda \varepsilon \kappa \tau \rho о \downarrow$ ко́ $\varepsilon \mu \pi о ́ \rho ı » »)$.

 ($о \delta \eta \gamma i ́ \alpha \gamma 1 \alpha \tau \eta \nu \alpha \delta \varepsilon \iota \delta \delta o ́ \tau \eta \sigma \eta$).

$\operatorname{\Delta IEONEI\Sigma }$ ©YMBALEID

 $\theta \varepsilon \mu \varepsilon \lambda ı \omega \delta \omega ́ v$ є $\lambda \varepsilon v \theta \varepsilon \rho 1 \propto ́ v » ~ \tau \eta \varsigma ~ 4-11-1950 ~(E \Sigma \Delta A)$

OPГANILMOI ГIA TO HAEKTPONIKO 'ЕГКАНMA

- Computer Crime Research Center: K $\varepsilon v \tau \rho o ~ \varepsilon \rho \varepsilon v v o ́ v ~ \sigma \chi \varepsilon \tau ו к \alpha ́ ~ \mu \varepsilon ~ \tau о ~ \eta \lambda \varepsilon к \tau \rho о v i к o ́ ~$

 (hhtp://www.crime-research.org/)

MOPФE HAEKTPONIKOY EГКАHMATOХ

 $\tau \eta \varsigma \alpha \pi \alpha ́ \tau \eta \varsigma ~ \pi о \cup ~ \delta \iota \alpha \pi \rho \alpha ́ \tau \tau 0 \vee \tau \alpha \iota ~ \mu \varepsilon ~ \tau ı \varsigma ~ \tau \varepsilon \chi \nu ı \kappa \varepsilon ́ \varsigma ~ p h i s i n g, ~ s p a m m i n g ~ e m a i l, ~ s p o o f i n g . ~$ (http://www.antiphishing.org/)
 $\pi \rho о \sigma \tau \alpha \sigma i ́ \alpha \tau \omega v \kappa \alpha \tau \alpha v \alpha \lambda \omega \tau \omega ́ v$. (http://www.consumer.gov)

- National Child Exploitation Coordination Center: Epєvvๆ $\iota \kappa o ́ ~ \kappa \varepsilon ́ v \tau \rho o ~ \sigma \tau о v ~ K \alpha v \alpha \delta \alpha ́ ~$
 тov Δ l $\alpha \delta$ бкки́ov. (http://necc.ca/)

- CERT@Coordination Center: Aлó $\tau 0 v \varsigma ~ \pi ı ~ \sigma \eta \mu \alpha \nu \tau \imath \kappa o v ́ s ~ o \rho \gamma \alpha v ı \sigma \mu о v ́ \varsigma ~ \sigma \chi \varepsilon \tau \iota \kappa \alpha ́ \mu \varepsilon ~ \tau \eta v$ $\alpha \sigma \varphi \dot{\lambda} \lambda \varepsilon 1 \alpha$ vлодоүıбтஸ́v каı $\delta \iota \kappa \tau \cup \omega v$.(http://www.cert.org/)

NOMOEE ${ }^{\text {IA }}$

- Computer Crime Laws by State: K $\alpha \tau \alpha ́ \lambda o \gamma o \varsigma ~ v o \mu о \theta \varepsilon \sigma i ́ \alpha \varsigma ~ \pi о v ~ \varepsilon i ́ v \alpha ı ~ \sigma \varepsilon ~ \imath \chi \chi v ́ ~ \sigma \varepsilon ~ \pi о \lambda ı \tau \varepsilon i ́ \varepsilon \varsigma ~$ $\tau \omega \vee$ Н.П.А. (nsi.org/Library/Compsec/computerlaw/statelaws.html)
 vo μ о $\varepsilon \tau \iota \kappa \alpha ́ ~ \zeta \eta \tau \eta ́ \mu \alpha \tau \alpha$. (http://cuber.lp.findlaw.com/criminal/)

BIBAIOГРАФIA

1. Email Generator Platinum, (2007), «Еилорıкó $\lambda \mathbf{o \gamma \imath \sigma \mu \iota к о ́ » , ~} \alpha v \alpha \kappa \tau \grave{\eta} \theta \eta \kappa \varepsilon \alpha \pi o ́$ http://www.email-business.com/index_en.htm
 http://www.programurl.com/software/harvester.htm
2. Forester T., Morrison P., (1994). «Computer Ethics: Cautionary Tales and Ethical Dilemmas in Computing», Massachousetts Institute of Technology
3. Frey D. (2003). «An Analysis of Cybercrime: Past, present and future», Buffalo University's Publications.
4. Goodman M., Brenner S., (2002). «The Emerging Consensus on Criminal Conduct in Cyberspace». UCLA Journal and Technology.
5. Lipton. J., (2007), «Beyond Cybersquatting Taking Domain Name Disputes past Trademark Policy», $\alpha v \alpha \kappa \tau \emptyset \dot{\eta} \nsupseteq \kappa \varepsilon \alpha \pi$ ó http://www.law.wfu.edu/prebuilt/w08-lipton.pdf
6. Newman, R. (2004). «Identity Theft». United States Department of Justice.
7. Peterson P., (2009), «Cyber crime lords using big business tactics: Cisco», $\alpha v \alpha \kappa \tau \eta \dot{\eta} \theta \emptyset \kappa \varepsilon$ $\alpha \pi$ http://www.physorg.com
8. Sinrod E., Reilly W., (2000). «Cyber-crimes: A Practical approach to the application of Federal Computer Laws». Santa Clara Computer and high technology law journal.
9. United Nations (1995), «International Review on Criminal Policy-United Nations Manual on the prevention and control of Computer Related crime», United Nations

 $\alpha \pi$ ó http://www.whatprice.co.uk/financial.html
10. Wikipedia, (2007), «Spam», $\alpha v \alpha \kappa \tau \eta ́ \theta \eta \kappa \varepsilon \alpha \pi o ́ ~ h t t p: / / e l . w i k i p e d i a . o r g / w i k i / S p a m ~$
11. Wikipedia, (2012), «Крvлтоүрафí⿱»», $\alpha v \alpha \kappa \tau \eta$ $\theta \eta \kappa \varepsilon \alpha \pi o ́$ http://el.wikipedia.org/wiki/K ρ vлтоү α рía
 $\alpha \nu \tau \varepsilon \gamma \kappa \lambda \eta \mu \alpha \tau \iota \kappa \eta ́ \varsigma \pi о \lambda \iota \tau \iota \kappa \eta ́ \varsigma »$, Ек

 бıктv́ฒv», Екסо́б\&ı̧̧ Avíкоида.
 Екঠо́бєı̧ इа́ккоида૬.

[^0]: ${ }^{1}$ Goodman M., Brenner S., (2002). «The Emerging Consensus on Criminal Conduct in Cyberspace». UCLA Journal and Technology.

[^1]: ${ }^{2}$ Frey D. (2003). «An Analysis of Cybercrime: Past, present and future», Buffalo University’s Publications.

[^2]: ${ }^{3}$ Forester T., Morrison P., (1994). «Computer Ethics: Cautionary Tales and Ethical Dilemmas in Computing», Massachousetts Institute of Technology

[^3]:

[^4]: ${ }^{5}$ United Nations (1995), «International Review on Criminal Policy-United Nations Manual on the prevention and control of Computer Related crime», United Nations Edition

[^5]:

[^6]:

[^7]:

[^8]:

[^9]:

[^10]:

[^11]: $\pi \lambda \eta \rho \omega \mu \omega ́ v »$, Елıбтๆцоvıќ Н $\mu \varepsilon \rho i ́ \delta \alpha$ EET

[^12]:

[^13]: $\pi \lambda \eta \rho \omega \mu \omega ́ v »$, Елıбтๆцоvıќ Н $\mu \varepsilon \rho i ́ \delta \alpha$ EET

[^14]:

[^15]: ${ }^{16}$ Sinrod E., Reilly W., (2000). «Cyber-crimes: A Practical approach to the application of Federal Computer Laws». Santa Clara Computer and high technology law journal.

[^16]: ${ }^{17}$ Sinrod E., Reilly W., (2000). «Cyber-crimes: A Practical approach to the application of Federal Computer Laws». Santa Clara Computer and high technology law journal.

[^17]: ${ }^{18}$ Wikipedia, (2007), «Spam», $\alpha v \alpha \kappa \tau \eta \emptyset \eta \kappa \varepsilon \alpha \pi$ http://en.wikipedia.org/ wiki/Spam

[^18]:
 http://www.programurl.com/software/harvester.htm
 http://www.email-business.com/index_en.htm

[^19]: ${ }^{21}$ Lipton. J., (2007), «Beyond Cybersquatting Taking Domain Name Disputes past Trademark Policy», $\alpha v \alpha \kappa \tau \eta \emptyset Ө \eta \kappa \varepsilon \alpha \pi$ http://www.law.wfu.edu/prebuilt/w08-lipton.pdf

[^20]: ${ }^{22}$ Sinrod E., Reilly W., (2000). «Cyber-crimes: A Practical approach to the application of Federal Computer Laws». Santa Clara Computer and high technology law journal.

[^21]:

 http://www.whatprice.co.uk/financial.html

[^22]: ${ }^{24}$ Newman, R. (2004). «Identity Theft». US Department of Justice.

[^23]: Avíкоч $\lambda \alpha$.

[^24]: Avíкоида.

[^25]: Avíкоч $\lambda \alpha$.

[^26]: Avíкоида.

[^27]:

[^28]:

[^29]: Вß $३ 10 \theta \eta ́ \kappa \eta$.

[^30]:

[^31]:

[^32]:

[^33]: Вß $\curlywedge 10 \theta \eta ́ к \eta$.

[^34]:

[^35]:

[^36]: $\pi \lambda \eta \rho \omega \mu \omega ́ v »$, Елıбтๆцоvıќ Н $\mu \varepsilon \rho i ́ \delta \alpha$ EET

[^37]: Екбо́бєя इóккоидас.

[^38]: Екоо́бıs इáккоида¢.

[^39]:

[^40]: ${ }^{43}$ Peterson P., (2009), «Cyber crime lords using big business tactics: Cisco», $\alpha v \alpha \kappa \tau \eta \dot{\theta} \eta \kappa \varepsilon \alpha \pi \delta ́$ http://www.physorg.com

