000 06039nam a2200505 i 4500
999 _c139176
_d139176
001 9780750313384
003 IOP
005 20201022103508.0
006 m eo d
007 cr cn |||m|||a
008 180111s2017 enka ob 000 0 eng d
020 _a9780750313384
_qebook
020 _a9780750313407
_qmobi
020 _z9780750313391
_qprint
040 _aCaBNVSL
_bgre
_eAACR2
_cGR-PaULI
_dGR-PaULI
082 0 4 _a616.994 064 2
_223
100 _aJones, Bleddyn
_eσυγγραφέας.
_9173397
245 1 0 _aPractical radiobiology for proton therapy planning /
_cBleddyn Jones.
260 _aBristol :
_bIOP Publishing,
_cc2017.
300 _a1 ηλεκτρονική πηγή (πολίλες σελιδαριθμήσεις) :
_bεικ. (μερ. έγχρ.).
490 1 _aIOP expanding physics,
_x2053-2563
490 1 _aSeries in physics and engineering in medicine and biology
504 _aΠεριλαμβάνει βιβλιογραφικές παραπομπές.
505 0 _a1. Particle physics for biological interactions -- 1.1. Physical beam parameters, essential dosimetry and reference (or control) radiation requirements for RBE studies -- 1.2. Physics interacting with biology
505 8 _a2. The essential radiobiology background -- 2.1. Introduction -- 2.2. Background and models -- 2.3. The [alpha]/[beta] ratio and its choice for modelling particle therapies
505 8 _a3. Some important medical and surgical considerations, including clinical trials -- 3.1. Introduction -- 3.2. Surgery -- 3.3. Cytotoxic chemotherapies -- 3.4. Age and other medical conditions -- 3.5. Interpretation of the case histories and literature -- 3.6. Clinical trials -- 3.7. Ethical issues -- 3.8. Mixed endpoints -- 3.9. The importance of follow-up -- 3.10. Publication bias -- 3.11. Some future prospects
505 8 _a4. Treatment planning and further medical perspectives -- 4.1. Introduction -- 4.2. Treatment planning processes -- 4.3. The important interaction of RBE issues with the marginal target volumes -- 4.4. Comparative planning studies -- 4.5. Trade-off situations in comparative treatment planning -- 4.5..1 Changes in the treatment plan -- 4.6. How to accommodate assumed errors in the RBE -- 4.7. The product of LET and dose
505 8 _a5. Historical development of radiotherapy including what was learned from fast neutrons -- 5.1. Introduction -- 5.2. A brief synopsis -- 5.3. Neutron therapy -- 5.4. More recent developments based on neutron studies -- 5.5. Some important conclusions
505 8 _a6. Fractionation -- 6.1. Introduction and background radiobiology -- 6.2. A brief history of fractionation -- 6.3. Modelling of fractionation -- 6.4. RBE and dose per fraction -- 6.5. Effects of regions of higher and lower dose per fraction relative to the prescribed dose for different fractionation patterns -- 6.6. Taking RBE uncertainty into account in fractionation -- 6.7. The use of the LQ model with large fraction sizes -- 6.8. Optimisation of fractionation using calculus methods -- 6.9. Other contributions to fractionation -- 6.10. Summary
505 8 _a7. The case for using a variable proton RBE -- 7.1. Introduction -- 7.2. Arguments to preserve the status quo or avoid using RBE -- 7.3. Justification of a variable RBE -- 7.4. Further considerations
505 8 _a8. A general RBE simple efficiency model for protons and light ions -- 8.1. Introduction -- 8.2. The experimental data and its limitations -- 8.3. Description of the Z-specific model -- 8.4. The graphical results -- 8.5. Conclusions and what remains to be done
505 8 _a9. Inclusion of the energy-efficiency LET and RBE model in proton therapy -- 9.1. Introduction -- 9.2. RBE uncertainties -- 9.3. Description of the quantitative model -- 9.4. Some comparisons with experimental data sets -- 9.5. Two clinical examples where PBT could be suboptimal -- 9.6. Prediction of tumour response from the RBE increment -- 9.7. Concluding discussion
505 8 _a10. Compensating for elapsed time : unintended treatment interruptions and re-treatments -- 10.1. Introduction -- 10.2. Unintended treatment interruptions -- 10.3. Summary for unintended treatment gap corrections -- 10.4. Re-treatments
505 8 _a11. Errors of Bragg peak positioning and their radiobiological correction -- 11.1. Introduction -- 11.2. Brief description of methods -- 11.3. Description of the model -- 11.4. General discussion -- 11.5. Conclusions
505 8 _a12. Additional considerations and conclusions -- 12.1. Introduction -- 12.2. Dose escalation where circumstances permit -- 12.3. Simultaneous 'sensitisation' effects by new therapies -- 12.4. Sensitivity analysis of the energy efficiency model -- 12.5. What could be achieved in a single international laboratory dedicated to high LET radiobiology -- 12.6. Conclusions.
520 3 _aPractical Radiobiology for Proton Therapy Planning covers the principles, advantages and potential pitfalls that occur in proton therapy, especially its radiobiological modelling applications. This book is intended to educate, inform and to stimulate further research questions. Additionally, it will help proton therapy centres when designing new treatments or when unintended errors or delays occur. The clear descriptions of useful equations for high LET particle beam applications, worked examples of many important clinical situations, and discussion of how proton therapy may be optimized are all important features of the text. This important book blends the relevant physics, biology and medical aspects of this multidisciplinary subject.
530 _aAlso available in print.
650 0 _aΡαδιοβιολογία
_933106
650 0 _aΡαδιοθεραπεία
_9120967
650 0 _aΠρωτόνια
_xΘεραπευτική χρήση
_9173398
830 0 _aIOP expanding physics.
830 0 _aSeries in physics and engineering in medicine and biology.
856 4 0 _uhttp://iopscience.iop.org/book/978-0-7503-1338-4
942 _2ddc
_cERS